Skip to main content
Log in

Electronic structure and optical properties of anatase doped with bismuth and carbon

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The calculations of the electronic structure of pure anatase and the anatase doped with carbon and/or bismuth have been carried out using the ab initio tight-binding linear muffin-tin orbital (TB-LMTO) method in the local spin density approximation with the inclusion of single-site Coulomb correlations (LSDA + U). The dielectric function, absorption coefficient, and refractive index have been calculated in the random phase approximation. It has been found that, upon doping, narrow bands of carbon and bismuth impurity states are formed in the band gap. The calculations of the optical absorption coefficient have demonstrated that the C,Bi-doping can lead to the absorption in the visible region and an enhancement of the absorption in the near-ultraviolet region. Therefore, the C,Bi-doping can increase the photocatalytic activity on the surface of doped anatase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Carp, C. L. Huisman, and A. Reller, Prog. Solid State Chem. 32, 33 (2004).

    Article  Google Scholar 

  2. Y. Matsumoto, U. Unal, N. Tanaka, Ak. Kudo, and H. Kato, J. Solid State Chem. 177, 4205 (2004).

    Article  ADS  Google Scholar 

  3. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Sciences (Washington) 293, 269 (2001).

    Article  Google Scholar 

  4. Sh. U. M. Khan, M. Al-Shahry, and W. B. Ingler, Jr., Sciences (Washington) 297, 2243 (2002).

    Article  Google Scholar 

  5. Y. Huang, W. Ho, Sh. Lee, L. Zhang, G. Li, and J. C. Yu, Langmuir 24, 3510 (2008).

    Article  Google Scholar 

  6. X. Yang, Ch. Cao, K. Hohn, L. Erickson, R. Mag- hirang, D. Hamal, and K. Klabunde, J. Catal. 252, 296 (2007).

    Article  Google Scholar 

  7. M. Batzill, E. H. Morales, and U. Diebold, Phys. Rev. Lett. 96, 026103 (2006).

    Article  ADS  Google Scholar 

  8. S. Livraghi, A. M. Czoska, M. C. Paganini, and E. Giamello, J. Solid State Chem. 182, 160 (2009).

    Article  ADS  Google Scholar 

  9. V. N. Krasil’nikov, A. P. Shtin, O. I. Gyrdasova, E. V. Polyakov, L. Yu. Buldakova, M. Yu. Yanchenko, V. M. Zainullina, and V. P. Zhukov, Russ. J. Inorg. Chem. 55(8), 1184 (2010).

    Article  Google Scholar 

  10. S. In, A. Orlov, R. Berg, F. Garcia, S. Pedrosa-Jimenez, M. S. Tikhov, D. S. Wright, and R. M. Lambert, J. Am. Chem. Soc. 129, 13790 (2007).

    Article  Google Scholar 

  11. G. Wu, J. Wang, Dan F. Thomas, and A. Chen, Langmuir 24, 3503 (2008).

    Article  Google Scholar 

  12. M. F. Smith, K. Setwong, R. Tongpool, D. Onkaw, S. Na-phattalung, S. Limpijumnong, and S. Rujirawat, Appl. Phys. Lett. 91, 142107 (2007).

    Article  ADS  Google Scholar 

  13. E. P. Reddy, L. Davydov, and P. G. Smirniotis, J. Phys. Chem. B 106, 3394 (2002).

    Article  Google Scholar 

  14. F. Gracia, J. P. Holgado, A. Caballero, and A. R. Gonzalez-Elipe, J. Phys. Chem. B 108, 17466 (2004).

    Article  Google Scholar 

  15. M. Sathish, B. Viswanathan, R. P. Viswanath, and C. S. Gopinath, Chem. Mater. 17, 6349 (2005).

    Article  Google Scholar 

  16. D. Chen, Zh. Jiang, J. Geng, Q. Wang, and D. Yang, Ind. Eng. Chem. Res. 46, 2741 (2007).

    Article  Google Scholar 

  17. T. Tachikawa, S. Tojo, K. Kawai, M. Endo, M. Fujitsuka, T. Ohno, K. Nishijima, Z. Miyamoto, and T. Majima, J. Phys. Chem. B 108, 19299 (2004).

    Article  Google Scholar 

  18. H. Tada, Q. Jin, H. Nishijima, H. Yamamoto, M. Fujishima, S. Okuoka, T. Hattori, Y. Sumida, and H. Kobayashi, Angew. Chem., Int. Ed. 50, 3501 (2011).

    Article  Google Scholar 

  19. H. Luo, T. Takata, Y. Lee, J. Zhao, K. Domen, and Y. Yan, Chem. Mater. 16, 846 (2004).

    Article  Google Scholar 

  20. J. L. Gole, J. D. Stout, C. Burda, Y. Lou, and X. Chen, J. Phys. Chem. B 108, 1230 (2004).

    Article  Google Scholar 

  21. U. Diebold, Surf. Sci. Rep. 48, 53 (2003).

    Article  ADS  Google Scholar 

  22. X. Chen and S. S. Mao, Chem. Rev. 107(7), 2891 (2007).

    Article  Google Scholar 

  23. T. Ji, F. Yang, Y. Lv, J. Zhou, and J. Sun, Mater. Lett. 63, 2044 (2009).

    Article  Google Scholar 

  24. J. Xu, M. Chen, and D. Fu, Appl. Surf. Sci. 257, 7381 (2011).

    Article  ADS  Google Scholar 

  25. H. Li, D. Wang, P. Wang, H. Fan, and T. Xie, Chem.—Eur. J. 15, 12521 (2009).

    Article  Google Scholar 

  26. J. H. Xin, Sh.-M. Zhang, G.-D. Qi, X.-Ch. Zheng, W.-P. Huang, and Sh.-H. Wu, React. Kinet. Catal. Lett. 86, 291 (2005).

    Article  Google Scholar 

  27. J. Yu, S. Liu, Zh. Xiu, W. Yu, and G. Feng, J. Alloys Compd. 461, L17 (2008).

    Article  Google Scholar 

  28. H.-H. Wu, Y. Yu, B.-L. Zhu, Sh.-R. Wang, W.-P. Huang, Sh.-H. Wu, and Sh.-M. Zhang, J. Dispersion Sci. Technol. 29, 1471 (2008).

    Article  Google Scholar 

  29. S. Rengaraj, X. L. Li, P. A. Tanner, Z. F. Pan, G. K. H. Pang, J. Mol. Catal. A: Chem. 247, 36 (2006).

    Article  Google Scholar 

  30. J.-Y. Lee, J. Park, and J.-H. Cho, Appl. Phys. Lett. 87, 011904 (2005).

    Article  ADS  Google Scholar 

  31. V. M. Zainullina and M. A. Korotin, Phys. Solid State 55(1), 26 (2013).

    Article  ADS  Google Scholar 

  32. K. Yang, Y. Dai, B. Huang, and M.-H. Whangbo, J. Phys. Chem. C 113, 2624 (2009).

    Article  Google Scholar 

  33. C.Di Valentin, G. Pacchioni, and A. Selloni, Chem. Mater. 17, 6656 (2005).

    Article  Google Scholar 

  34. H. Wang and J. Lewis, J. Phys.: Condens. Matter 17, L209 (2005).

    Article  ADS  Google Scholar 

  35. V. M. Zainullina, V. P. Zhukov, V. N. Krasil’nikov, M. Yu. Yanchenko, L. Yu. Buldakova, and E. V. Polyakov, Phys. Solid State 52(2), 271 (2010).

    Article  ADS  Google Scholar 

  36. V. P. Zhukov, V. M. Zainullina, and E. V. Chulkov, Int. J. Mod. Phys. B 24, 6049 (2010).

    Article  ADS  MATH  Google Scholar 

  37. V. M. Zainullina, V. P. Zhukov, M. A. Korotin, and E. V. Polyakov, Phys. Solid State 53(7), 1328 (2011).

    Article  ADS  Google Scholar 

  38. R. H. Zhang, Q. Wang, Q. Li, J. Dai, and D. H. Huang, Physica B (Amsterdam) 406, 3417 (2011).

    ADS  Google Scholar 

  39. Q. K. Li, B. Wang, Y. Zheng, Q. Wang, and H. Wang, Phys. Status. Solidi C 1, 217 (2007).

    Article  Google Scholar 

  40. R. Long and N. J. English, Mol. Simul. 36, 618 (2010).

    Article  Google Scholar 

  41. O. K. Andersen, Z. Pawlowska, and O. Jepsen, Phys. Rev. B: Condens. Matter 34, 5253 (1986).

    Article  ADS  Google Scholar 

  42. V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).

    Article  ADS  Google Scholar 

  43. J. C. Inkson, Many-Body Theory of Solids (Plenum, New York, 1986).

    Google Scholar 

  44. C. J. Howard, T. M. Sabina, and F. Dickson, Acta Crystallogr., Sect. B: Struct. Sci. 47, 462 (1991).

    Article  Google Scholar 

  45. hhtp://www.quantum-espresso.org

  46. M. A. Korotin, I. S. Elfimov, V. I. Anisimov, M. Troyer, and D. I. Khomskii, Phys. Rev. Lett. 83, 1387 (1999).

    Article  ADS  Google Scholar 

  47. V. M. Zainullina, M. A. Korotin, and V. P. Zhukov, Physica B (Amsterdam) 405, 2110 (2010).

    ADS  Google Scholar 

  48. I. V. Solovyev, J. Phys.: Condens. Matter 20(29), 293201 (2008).

    Article  Google Scholar 

  49. D. Pines, Elementary Excitations in Solids (Addison-Wesley, New York, 1963).

    Google Scholar 

  50. F. Aryasetiawan and O. Gunnarsson, Phys. Rev. B: Condens. Matter 49, 7219 (1994).

    Article  ADS  Google Scholar 

  51. V. P. Zhukov, F. Aryasetiawan, E. V. Chulkov, I. G. de Gurtubay, and P. M. Echenique, Phys. Rev. B: Condens. Matter 64, 195122 (2001).

    Article  ADS  Google Scholar 

  52. J. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972; Fizmatlit, Moscow, 1988).

    Google Scholar 

  53. H. Tang, H. Berger, P. E. Schmid, F. Levy, and G. Burri, Solid State Commun. 87, 847 (1993).

    Article  ADS  Google Scholar 

  54. R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, and F. Levy, J. Appl. Phys. 75, 2945 (1994).

    Article  ADS  Google Scholar 

  55. Y. Wang and D. J. Doren, Solid State Commun. 136, 142 (2005).

    Article  ADS  Google Scholar 

  56. S. H. Wempel, J. Chem. Phys. 67, 2151 (1977).

    Article  ADS  Google Scholar 

  57. R. J. Gonzalez, R. Zallen, and H. Berger, Phys. Rev. B: Condens. Matter 55, 7014 (1997).

    Article  ADS  Google Scholar 

  58. R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, J. Phys. Chem. Ref. Data 31, 931 (2002).

    Article  ADS  Google Scholar 

  59. F. M. F. de Groot, J. Faber, J. J. M. Michiels, M. T. Czyyk, M. Abbate, and J. C. Fuggle, Phys. Rev. B: Condens. Matter 48, 2074 (1993).

    Article  ADS  Google Scholar 

  60. M. Kaneko and I. Okura, Photocatalysis: Sciense and Technology (Springer-Verlag, New York, 2002), p. 13.

    Google Scholar 

  61. S. Sato, Chem. Phys. Lett. 123, 126 (1986).

    Article  ADS  Google Scholar 

  62. Z. Zhao and Q. Liu, J. Phys. D: Appl. Phys. 41, 025105 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Zainullina.

Additional information

Original Russian Text © V.M. Zainullina, V.P. Zhukov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 3, pp. 534–541.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zainullina, V.M., Zhukov, V.P. Electronic structure and optical properties of anatase doped with bismuth and carbon. Phys. Solid State 55, 589–597 (2013). https://doi.org/10.1134/S1063783413030347

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413030347

Keywords

Navigation