Skip to main content
Log in

Optical-cell model based on the lasing competition of mode structures with different Q-factors in high-power semiconductor lasers

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A model describing the operation of a completely optical cell, based on the competition of lasing of Fabry-Perot cavity modes and the high-Q closed mode in high-power semiconductor lasers is proposed. Based on rate equations, the conditions of lasing switching between Fabry-Perot modes for ground and excited lasing levels and the closed mode are considered in the case of increasing internal optical loss under conditions of high current pump levels. The optical-cell operation conditions in the mode of a high-power laser radiation switch (reversible mode-structure switching) and in the mode of a memory cell with bistable irreversible lasing switching between mode structures with various Q-factors are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Wenzel, A. Klehr, S. Schwertfeger, A. Liero, Th. Hoffmann, O. Brox, M. Thomas, G. Erbert, and G. Trankle, Proc. SPIE 8241, 82410V (2012).

    Article  ADS  Google Scholar 

  2. M. J. Connely, Semiconductor Optical Amplifiers (Kluwer Academic, 2002).

    Google Scholar 

  3. B. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, J. Lightwave Technol. 27, 2125 (2009).

    Article  ADS  Google Scholar 

  4. S. O. Slipchenko, A. A. Podoskin, D. A. Vinokurov, A. L. Stankevich, A. Yu. Leshko, N. A. Pikhtin, V. V. Zabrodskii, and I. S. Tarasov, Semiconductors 45, 1378 (2011).

    Article  ADS  Google Scholar 

  5. S. O. Slipchenko, A. A. Podoskin, N. A. Pikhtin, A. L. Stankevich, N. A. Rudova, A. Yu. Leshko, and I. S. Tarasov, Semiconductors 45, 673 (2011).

    Article  ADS  Google Scholar 

  6. S. O. Slipchenko, A. A. Podoskin, N. A. Pikhtin, Z. N. Sokolova, A. Yu. Leshko, and I. S. Tarasov, Semiconductors 45, 663 (2011).

    Article  ADS  Google Scholar 

  7. S. O. Slipchenko, A. A. Podoskin, A. Yu. Leshko, A. V. Rozhkov, N. A. Pikhtin, and I. S. Tarasov, in Proceedings of the Conference on Lasers and Electro-Optics (Munich, Germany, 2013), paper CB, p. 24.

    Google Scholar 

  8. S. O. Slipchenko, A. A. Podoskin, A. Yu. Leshko, A. V. Rozhkov, N. A. Pikhtin, and I. S. Tarasov, in Proceedings of the 15th International Conference on Laser Optics (St.-Petersburg, Russia, 2012), paper TuR3-13.

    Google Scholar 

  9. S. O. Slipchenko, A. A. Podoskin, N. A. Pikhtin, and I. S. Tarasov, Laser Phys. 24, 105001 (2014).

    Article  ADS  Google Scholar 

  10. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

    Google Scholar 

  11. S. O. Slipchenko, A. A. Podoskin, I. S. Shashkin, V. V. Zolotarev, N. A. Pikhtin, and I. S. Tarasov, Semiconductors 48, 686 (2014).

    Article  ADS  Google Scholar 

  12. S. O. Slipchenko, Z. N. Sokolova, N. A. Pikhtin, K. S. Borshchev, D. A. Vinokurov, and I. S. Tarasov, Semiconductors 40, 990 (2006).

    Article  ADS  Google Scholar 

  13. N. A. Pikhtin, A. V. Lyutetskii, D. N. Nikolaev, S. O. Slipchenko, Z. N. Sokolova, V. V. Shamakhov, I. S. Shashkin, A. D. Bondarev, L. S. Vavilova, and I. S. Tarasov, Semiconductors 48, 1342 (2014).

    Article  ADS  Google Scholar 

  14. I. S. Shashkin, D. A. Vinokurov, A. V. Lyutetskii, D. N. Nikolaev, N. A. Pikhtin, M. G. Rastegaeva, Z. N. Sokolova, S. O. Slipchenko, A. L. Stankevich, V. V. Shamakhov, D. A. Veselov, A. D. Bondarev, and I. S. Tarasov, Semiconductors 46, 1207 (2012).

    Article  ADS  Google Scholar 

  15. B. S. Ryvkin and E. A. Avrutin, J. Appl. Phys. 97, 113106 (2005).

    Article  ADS  Google Scholar 

  16. X. Wang, P. Crump, H. Wenzel, A. Liero, T. Hoffmann, A. Pietrzak, C. M. Schultz, A. Klehr, A. Ginolas, S. Einfeldt, F. Bugge, G. Erbert, and G. Trankle, IEEE J. Quantum. Electron. 46, 658 (2010).

    Article  ADS  Google Scholar 

  17. H. Wenzel, P. Crump, A. Pietrzak, X. Wang, G. Erbert, and G. Trankle, New J. Phys. 12, 085007 (2010).

    Article  ADS  Google Scholar 

  18. D. A. Veselov, V. A. Kapitonov, N. A. Pikhtin, A. V. Lyutetskii, D. N. Nikolaev, S. O. Slipchenko, Z. N. Sokolova, V. V. Shamakhov, I. S. Shashkin, and I. S. Tarasov, Quantum Electron. 44, 993 (2014).

    Article  ADS  Google Scholar 

  19. H. Wenzel, IEEE J. Sel. Top. Quantum Electron. 19, 1502913 (2013).

    Article  Google Scholar 

  20. L. V. Asryan, Quantum Electron. 35, 1117 (2005).

    Article  ADS  Google Scholar 

  21. C. B. Su and R. Olshansky, Appl. Phys. Lett. 41, 833 (1982).

    Article  ADS  Google Scholar 

  22. C. B. Su, R. Olshansky, J. Manning, and W. Powazinik, Appl. Phys. Lett. 44, 1030 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Podoskin.

Additional information

Original Russian Text © A.A. Podoskin, I.S. Shashkin, S.O. Slipchenko, N.A. Pikhtin, I.S. Tarasov, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 8, pp. 1108–1114.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podoskin, A.A., Shashkin, I.S., Slipchenko, S.O. et al. Optical-cell model based on the lasing competition of mode structures with different Q-factors in high-power semiconductor lasers. Semiconductors 49, 1083–1089 (2015). https://doi.org/10.1134/S1063782615080151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615080151

Keywords

Navigation