Skip to main content
Log in

Molecular-beam epitaxy of heterostructures of wide-gap II–VI compounds for low-threshold lasers with optical and electron pumping

  • Surfaces, Interfaces, and Thin Films
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The paper presents basic approaches in designing and growing by molecular beam epitaxy of (Zn,Mg)(S,Se)-based laser heterostructures with multiple CdSe quantum dot (QD) sheets or ZnCdSe quantum wells (QW). The method of calculation of compensating short-period ZnSSe/ZnSe superlattices (SLs) in both active and waveguide regions of laser heterostructures possessing the different waveguide thickness and different number of active regions is presented. The method allowing reduction of the density of nonequilibrium point defects in the active region of the II–VI laser structures has been proposed. It utilizes the migration enhanced epitaxy mode in growing the ZnSe QW confining the CdSe QD sheet. The threshold power density as low as P thr ∼ 0.8 kW/cm2 at T = 300 K has been demonstrated for laser heterostructure with single CdSe QD sheet and asymmetric graded-index waveguide with strain-compensating SLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Gundel, D. Albert, J. Nurnberger, and W. Faschinger, Phys. Rev. B 60, R16271 (1999).

    Article  ADS  Google Scholar 

  2. S. V. Sorokin, I. V. Sedova, S. V. Gronin, G. V. Klimko, K. G. Belyaev, S. V. Ivanov, A. Alyamani, E. V. Lutsenko, A. G. Vainilovich, and G. P. Yablonskii, Electron. Lett. 48, 118 (2012).

    Article  Google Scholar 

  3. M. M. Zverev, N. A. Gamov, E. V. Zhdanova, D. V. Peregudov, V. B. Studenov, S. V. Ivanov, I. V. Sedova, S. V. Sorokin, S. V. Gronin, and P. S. Kop’ev, Tech. Phys. Lett. 33, 1032 (2007).

    Article  ADS  Google Scholar 

  4. M. M. Zverev, N. A. Gamov, E. V. Zdanova, V. N. Studionov, D. V. Peregoudov, S. V. Sorokin, I. V. Sedova, S. V. Gronin, P. S. Kop’ev, I. M. Olikhov, and S. V. Ivanov, Phys. Status Solidi B 247, 1561 (2010).

    Article  ADS  Google Scholar 

  5. E. V. Lutsenko, A. G. Voinilovich, N. V. Rzheutskii, V. N. Pavlovskii, G. P. Yablonskii, S. V. Sorokin, S. V. Gronin, I. V. Sedova, P. S. Kop’ev, S. V. Ivanov, M. Alanzi, A. Hamidalddin, and A. Alyamani, Quantum Electron. 43, 418 (2013).

    Article  ADS  Google Scholar 

  6. S. V. Sorokin, E. V. Lutsenko, I. V. Sedova, S. V. Gronin, S. V. Ivanov, A. G. Vainilovich, N. V. Rzheutskii, and G. P. Yablonskii, in Proceedings of the 17th European Molecular Beam Epitaxy Workshop (Levi, Finland, 2013), p. 239.

    Google Scholar 

  7. K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, M. Ikeda, Y. Enya, Sh. Takagi, M. Adachi, T. Kyono, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, Sh. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, and T. Nakamura, Appl. Phys. Express 5, 082103 (2012).

    Article  ADS  Google Scholar 

  8. S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, Appl. Phys. Express 5, 082102 (2012).

    Article  ADS  Google Scholar 

  9. A. Colli, E. Pelucchi, and A. Franciosi, Appl. Phys. Lett. 83, 81 (2003); A. Colli, E. Carlino, E. Pelucchi, V. Grillo, and F. Franciosi, J. Appl. Phys. 96, 2592 (2004).

    Article  ADS  Google Scholar 

  10. A. Ohtake, T. Hanada, K. Arai, T. Komura, S. Miwa, K. Kimura, T. Yasuda, C. Jin, and T. Yao, J. Cryst. Growth 201–202, 490 (1999).

    Article  Google Scholar 

  11. B. J. Wu, G. M. Haugen, J. M. DePuydt, L. H. Kuo, and L. Salamanca-Riba, Appl. Phys. Lett. 68, 2828 (1996).

    Article  ADS  Google Scholar 

  12. S. V. Gronin, I. V. Sedova, S. V. Sorokin, G. V. Klimko, K. G. Belyaev, A. V. Lebedev, A. A. Sitnikova, A. A. Toropov, and S. V. Ivanov, Phys. Status Solidi C 9, 1833 (2012).

    Article  ADS  Google Scholar 

  13. S. V. Ivanov, S. V. Sorokin, P. S. Kop’ev, J. R. Kim, H. D. Jung, and H. S. Park, J. Cryst. Growth 159, 16 (1996).

    Article  ADS  Google Scholar 

  14. J. H. Neave, B. A. Joyce, P. J. Dobson, and N. Norton, Appl. Phys. Lett. A 31, 1 (1983).

    Article  ADS  Google Scholar 

  15. S. V. Ivanov, S. V. Sorokin, I. L. Krestnikov, N. N. Faleev, B. Ya. Ber, I. V. Sedova, and P. S. Kop’ev, J. Cryst. Growth 184–185, 70 (1998).

    Article  Google Scholar 

  16. J. H. van der Merwe and W. A. Jesser, J. Appl. Phys. 63, 1509 (1988).

    Article  ADS  Google Scholar 

  17. S. V. Ivanov, A. A. Toropov, S. V. Sorokin, T. V. Shubina, N. D. Il’inskaya, A. V. Lebedev, I. V. Sedova, P. S. Kop’ev, Zh. I. Alferov, Kh. D. Lugauer, G. Resher, M. Kaim, F. Fisher, A. Vaag, and G. Landver, Semiconductors 32, 1137 (1998).

    Article  ADS  Google Scholar 

  18. I. V. Sedova, S. V. Sorokin, A. A. Sitnikova, R. V. Zolotareva, S. V. Ivanov, and P. S. Kop’ev, in Proceedings of the 7th International Symposium on Nanostructures: Physics and Technology (St. Petersburg, Russia, 1999), p. 547.

    Google Scholar 

  19. I. V. Sedova, E. V. Lutsenko, S. V. Gronin, S. V. Sorokin, A. G. Vainilovich, A. A. Sitnikova, G. P. Yablonskii, A. Alyamani, D. L. Fedorov, P. S. Kop’ev, and S. V. Ivanov, Appl. Phys. Lett. 98, 171103 (2011).

    Article  ADS  Google Scholar 

  20. F. Tinjod, I.-C. Robin, R. André, K. Kheng, and H. Mariette, J. Alloys Compd. 371, 63 (2004).

    Article  Google Scholar 

  21. M. M. Zverev, N. A. Gamov, E. V. Zhdanova, V. B. Studionov, D. V. Peregoudov, S. V. Gronin, I. V. Sedova, S. V. Sorokin, and S. V. Ivanov, in Proceedings of the 16th International Conference on Laser Optics 2014 (St. Petersburg, Russia, 2014), ThR3–p09.

    Google Scholar 

  22. S. V. Ivanov, S. V. Sorokin, and I. V. Sedova, in Molecular Beam Epitaxy: From Research to Mass Production, Ed. by M. Henini (Elsevier, Amsterdam, 2013), p. 611.

  23. M. M. Zverev, N. A. Gamov, E. V. Zhdanova, D. V. Peregoudov, V. B. Studionov, S. V. Gronin, I. V. Sedova, S. V. Sorokin, and S. V. Ivanov, in Proceedings of the 16th International Conference on Laser Optics 2014 (St. Petersburg, Russia, 2014), ThR3–p08.

    Google Scholar 

  24. I. V. Sedova, S. V. Sorokin, A. A. Sitnikova, O. V. Nekrutkina, A. N. Reznitsky, and S. V. Ivanov, in Compound Semiconductors 2002, Inst. Phys. Conf. Ser. No. 174, Ed. by M. Ilegems, G. Weimann, and J. Wagner (Inst. of Phys., Bristol, 2003), Sect. 3, p. 161.

  25. J. M. Gaines, Philos. J. Res. 49, 245 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Sorokin.

Additional information

Original Russian Text © S.V. Sorokin, S.V. Gronin, I.V. Sedova, M.V. Rakhlin, M.V. Baidakova, P.S. Kop’ev, A.G. Vainilovich, E.V. Lutsenko, G.P. Yablonskii, N.A. Gamov, E.V. Zhdanova, M.M. Zverev, S.S. Ruvimov, S.V. Ivanov, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 3, pp. 342–348.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, S.V., Gronin, S.V., Sedova, I.V. et al. Molecular-beam epitaxy of heterostructures of wide-gap II–VI compounds for low-threshold lasers with optical and electron pumping. Semiconductors 49, 331–336 (2015). https://doi.org/10.1134/S1063782615030215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615030215

Keywords

Navigation