Skip to main content
Log in

Mechanisms governing radial heat fluxes in tokamak plasma

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A method for analyzing the characteristics of turbulence responsible for radial heat transport is proposed. The method is based on the previously proposed hypotheses (to a great extent, confirmed experimentally) concerning the consistency of normalized pressure profiles in tokamak plasmas and the mechanism of internal transport barrier formation. Using the proposed approach, it is shown that, under an external action on the plasma, when the plasma heat flux onto the wall grows, the spectrum of turbulent modes broadens due to the excitation of modes with lower poloidal numbers m. Thus, in contrast to the conventional diffusion approach, the transport coefficient depends on the flux intensity. A mechanism of formation of internal transport barriers is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Dyabilin and K. A. Razumova, Nucl. Fusion 55, 053023 (2015).

    Article  ADS  Google Scholar 

  2. K. S. Dyabilin and K. A. Razumova, Plasma Phys. Rep. 41, 685 (2015).

    Article  ADS  Google Scholar 

  3. K. A. Razumova, V. F. Andreev, L. G. Eliseev, A. Ya. Kislov, R. J. La Haye, S. E. Lysenko, A. V. Melnikov, G. E. Notkin, Yu. D. Pavlov, and M. Yu. Kantor, Nucl. Fusion 51, 083024 (2011).

    Article  ADS  Google Scholar 

  4. K. A. Razumova, V. F. Andreev, A. Ya. Kislov, N. A. Kirneva, S. E. Lysenko, Yu. D. Pavlov, T. V. Shafranov, the T-10 Team, A. J. H. Donné, G. M. D. Hogeweij, G. W. Spakman, R. Jaspers, the TEXTOR team, M. Kantor, and M. Walsh, Nucl. Fusion 49, 065011 (2009).

    Article  ADS  Google Scholar 

  5. E. A. Lazarus, G. A. Navratil, C. M. Greenfield, E. J. Strait, M. E. Austin, K. H. Burrell, T. A. Casper, D. R. Baker, J. C. DeBoo, E. J. Doyle, K. R. Durst, J. R. Ferron, C. B. Forest, P. Gohil, R. J. Groebner, et al., Nucl. Fusion 47, 7 (1997).

    Article  ADS  Google Scholar 

  6. T. Fujita, T. Hatae, T. Oikawa, S. Takeji, H. Shirai, Y. Koide, S. Ishida, S. Ide, Y. Ishii, T. Ozeki, S. Higashijima, R. Yoshino, Y. Kamada, and Y. Neyatani, Nucl. Fusion 38, 207 (1998).

    Article  ADS  Google Scholar 

  7. C. Gormezano, Plasma Phys. Controlled Fusion 41, B367(1999).

    Article  Google Scholar 

  8. Yu. F. Baranov, B. Alper, G. A. Cottrell, D. V. Bartlett, C. D. Challis, G. D. Conway, N. Deliyanakis, C. Gormezano, G. T. A. Huysmans, X. Litaudon, V. V. Parail, A. C. C. Sips, P. Smeulders, F. X. Soldner, B. J. D. Tubbing, et al., Nucl. Fusion 39, 1463 (1999).

    Article  ADS  Google Scholar 

  9. K. H. Burrell, Phys. Plasmas 4, 1499 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. V. Melnikov, L. G. Eliseev, S. V. Perfilov, V. F. Andreev, S. A. Grashin, K. S. Dyabilin, A. N. Chudnovskiy, M. Yu. Isaev, S. E. Lysenko, V. A. Mavrin, M. I. Mikhailov, D. V. Ryzhakov, R. V. Shurygin, and V. N. Zenin, Nucl. Fusion 53, 093019 (2013).

    Article  ADS  Google Scholar 

  11. E. Joffrin, C. D. Challis, G. D. Conway, X. Garbet, A. Gude, S. Günter, N. C. Hawkes, T. C. Hender, D. F. Howell, G. T. A. Huysmans, E. Lazzaro, P.Maget, M. Marachek, A. G. Peeters, S. D. Pinches, et al., Nucl. Fusion 43, 1167 (2003).

    Article  ADS  Google Scholar 

  12. K. A. Razumova, A. J. H. Donné, V. F. Andreev, G. M. D. Hogeweij, I. S. Bel’bas, A. A. Borschegovskii, A. Yu. Dnestrovskij, V. V. Chistyakov, R. Jaspers, A. Ya. Kislov, V. I. I’lin, D. A. Krupin, S. V. Krylov, D. E. Kravtsov, Y. Liang, et al., Nucl. Fusion 44, 1067 (2004).

    Article  ADS  Google Scholar 

  13. K. A. Razumova, V. F. Andreev, I. S. Bel’bas, A. V. Gorshkov, A. Yu. Dnestrovskij, K. S. Dyabilin, A. Ya. Kislov, S. E. Lysenko, G. E. Notkin, N. N. Timchenko, A. N. Chudnovskiy, and D. A. Shelukhin, Plasma Phys. Rep. 39, 691 (2013).

    Article  ADS  Google Scholar 

  14. P. C. de Vries, E. Joffrin, M. Brix, C. D. Challis, K. Crombé, B. Esposito, N. C. Hawkes, C. Giroud, J. Hobirk, J. Lönnroth, P. Mantica, D. Strintzi, T. Tala, I. Voitsekhovitch, and JET-EFDA Contributors, Nucl. Fusion 49, 075007 (2009).

    Article  ADS  Google Scholar 

  15. M. A. Borisov, S. V. Cherkasov, A. V. Danilov, Yu. N. Dnestrovskij, A. Yu. Dnestrovskij, A. Field, S. E. Lysenko, H. Meyer, and V. A. Vershkov, Probl. At. Sci. Technol., Ser. Plasma Physics 83, 96 (2013). http://vant.kipt.kharkov.ua/TABFRAME.html.

    Google Scholar 

  16. M. R. de Baar, G. M. D. Hogeweij, and N. J. Lopes Cardozo, Phys. Rev. Lett. 82, 89 (1999).

    Article  ADS  Google Scholar 

  17. G. M. D. Hogeweij, N. J. Lopes Cardozo, M. R. De Baar, and A. M. R. Schilham, Nucl. Fusion 38, 1881 (1998).

    Article  ADS  Google Scholar 

  18. S. V. Soldatov, A. Kramer-Flecken, M. Kantor, B. Unterbrg, Y. Sun, G. Van Oost, and D. Reiter, Plasma Phys. Controlled Fusion 52, 085001 (2010).

    Article  ADS  Google Scholar 

  19. G. S. Yun, W. Lee, M. J. Choi, J. Lee, H. K. Park, B. Tobias, C. W. Domier, N. C. Luhmann, Jr., A. J. H. Donné, J. H. Lee, and KSTAR Team, Phys. Rev. Lett. 107, 045004 (2011).

    Article  ADS  Google Scholar 

  20. C. M. Greenfield, C. L. Rettig, G. M. Staebler, B. W. Stallard, M. E. Austin, K. H. Burrell, J. C. DeBoo, J. S. de Grassie, E. J. Doyle, P. Gohil, R. J. Groebner, J. Lohr, G. R. McKee, W. A. Peebles, C. C. Petty, et al., Nucl. Fusion 39, 1723 (1999).

    Article  ADS  Google Scholar 

  21. C. M. Greenfield, J. C. De Boo, T. H. Osborne, F. W. Perkins, M. N. Rosenbluth, and D. Boucher, Nucl. Fusion 37, 1215 (1997).

    Article  ADS  Google Scholar 

  22. E. J. Doyle, T. L. Rhodes, L. Zeng, D. R. Baker, K. H. Burrell, J. C. DeBoo, C. M. Greenfield, G. R. McKee, W. A. Peebles, C. L. Rettig, B. W. Rice, G. M. Staebler, and B. W. Stallard, Plasma Phys. Controlled Fusion 42, A237 (2000).

    Article  ADS  Google Scholar 

  23. B. W. Rice, E. A. Lazarus, M. E. Austin, K. H. L. Burrel, T. A. Casper, R. J. Groebner, P. Gohil, C. B. Forest, H. Ikezi, L. L. Lao, M. E. Mauel, G. A. Navratil, B. W. Stallard, E. J. Strait, and T. S. Taylor, Nucl. Fusion 36, 1271 (1996).

    Article  ADS  Google Scholar 

  24. B. Stallard, Phys. Plasmas 6, 1987 (1999).

    Article  ADS  Google Scholar 

  25. T. Fujita, S. Ide, H. Shirai, M. Kikuchi, O. Naito, Y. Koide, S. Takeji, H. Kubo, and S. Ishida, Phys. Rev. Lett. 78, 2377 (1997).

    Article  ADS  Google Scholar 

  26. V. A. Vershkov, D. A. Shelukhin, S. V. Soldatov, A. O. Urazbaev, S. A. Grashin, L. G. Eliseev, A. V. Melnikov, and the T-10 team, Nucl. Fusion 45, 203 (2005).

    Article  ADS  Google Scholar 

  27. V. P. Pastukhov and N. V. Chudin, JETP Lett. 90, 651 (2009).

    Article  ADS  Google Scholar 

  28. V. P. Pastukhov, N. V. Chudin, and D. V. Smirnov, Plasma Phys. Controlled Fusion 53, 054015 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Razumova.

Additional information

Original Russian Text © K.A. Razumova, N.N. Timchenko, A.Yu. Dnestrovskij, S.E. Lysenko, 2016, published in Fizika Plazmy, 2016, Vol. 42, No. 9, pp. 787–795.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razumova, K.A., Timchenko, N.N., Dnestrovskij, A.Y. et al. Mechanisms governing radial heat fluxes in tokamak plasma. Plasma Phys. Rep. 42, 809–817 (2016). https://doi.org/10.1134/S1063780X16090087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16090087

Navigation