Skip to main content
Log in

Particle-in-cell simulation of multipactor discharge on a dielectric in a parallel-plate waveguide

  • Applied Physics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

An original 2D3V (two-dimensional in coordinate space and three-dimensional in velocity space) particle-in-cell code has been developed for simulation of multipactor discharge on a dielectric in a parallelplate metal waveguide with allowance for secondary electron emission (SEE) from the dielectric surface and waveguide walls, finite temperature of secondary electrons, electron space charge, and elastic and inelastic scattering of electrons from the dielectric and metal surfaces. The code allows one to simulate all stages of the multipactor discharge, from the onset of the electron avalanche to saturation. It is shown that the threshold for the excitation of a single-surface multipactor on a dielectric placed in a low-profile waveguide with absorbing walls increases as compared to that in the case of an unbounded dielectric surface due to escape of electrons onto the waveguide walls. It is found that, depending on the microwave field amplitude and the SEE characteristics of the waveguide walls, the multipactor may operate in two modes. In the first mode, which takes place at relatively low microwave amplitudes, a single-surface multipactor develops only on the dielectric, the surface of which acquires a positively potential with respect to the waveguide walls. In the second mode, which occurs at sufficiently high microwave intensities, a single-surface multipactor on the dielectric and a two-surface multipactor between the waveguide walls operate simultaneously. In this case, both the dielectric surface and the interwall space acquire a negative potential. It is shown that electron scattering from the dielectric surface and waveguide walls results in the appearance of high-energy tails in the electron distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Puech, D. Anderson, M. Buyanova, D. Dorozhkina, U. Jordan, L. Lapierre, M. Lisak, V. Semenov, J. Sombrin, and R. Udiljak, in Proceedings of the 5th International Workshop on Multipactor, Corona, and Passive Intermodulation in Space RF Hardware (MULCOPIM- 2005), Noordwijk, 2005, p. 235.

    Google Scholar 

  2. F. Piro and Y. Brand, in Proceedings of the 8th European Conference on Antennas and Propagation, Hague, 2014 (European Microwave Association, Louvain-la-Neuve, 2014), p. 1643.

    Google Scholar 

  3. M. Thumm, State-of-the-Art of High Power Gyro-Devices and Free Electron Masers (Karlsruhe Inst. of Technology, Karlsruhe, 2013).

    Google Scholar 

  4. A. P. H. Goede, W. A. Bongers, B. S. Q. Elzendoorn, M. F. Graswinckel, and M. R. de Baa, Fusion Eng. Design 85, 1117 2010.

    Article  Google Scholar 

  5. G. Giruzzi, M. Lennholm, A. Parkin, G. Aiello, M. Bellinger, J. Bird, F. Bouquey, H. Braune, A. Bruschi, P. Butcher, R. Clay, E. De La Luna, G. Denisov, T. Edlington, J. Fanthome, et al., Nucl. Fusion 51, 063033 2011.

    Article  ADS  Google Scholar 

  6. A. Neuber, J. Dickens, D. Hemmert, H. Krompholz, L. L. Hatfield, and M. Kristiansen, IEEE Trans. Plasma Sci. 26, 296 1998.

    Article  ADS  Google Scholar 

  7. B. W. Hoff, P. J. Mardahl, R. M. Gilgenbach, M. D. Haworth, D. M. French, Y. Y. Lau, and M. Franzi, Rev. Sci. Instrum. 80, 094702 2009.

    Article  ADS  Google Scholar 

  8. X.-W. Hao, G.-J. Zhang, H.-J. Huang, J.-Y. Fang, C.-H. Chen, and W.-H. Huang, in Proceedings of the 24th International Symposium on Discharges and Electrical Insulation in Vacuum, Braunschweig, 2010, p. 113.

  9. J. R. M. Vaughan, IEEE Trans. Electron. Dev. 35, 1172 1988.

    Article  ADS  Google Scholar 

  10. R. A. Kishek and Y. Y. Lau, Phys. Rev. Lett. 80, 193 1988.

    Article  ADS  Google Scholar 

  11. R. A. Kishek, Y. Y. Lau., L. K. Ang, A. Valfells, and R. M. Gilgenbach, Phys. Plasmas 5, 2120 1998.

    Article  ADS  Google Scholar 

  12. V. E. Semenov, E. I. Rakova, D. Anderson, M. Lisak, and J. Puech, Phys. Plasmas 14, 033501 2007.

    Article  ADS  Google Scholar 

  13. A. S. Sakharov, V. A. Ivanov, Yu. A. Tarbeeva, and M. E. Konyzhev, in XXXVIII International Zvenigorod Conference on Plasma Physics and Controlled Fusion, Zvenigorod, 2011, Book of Abstracts, p. 319.

    Google Scholar 

  14. A. S. Sakharov, V. A. Ivanov, and M. E. Konyzhev, in Proceedings of the VIII International Workshop “Microwave Discharges: Fundamentals and Applications,” Zvenigorod, 2012, p. 75.

    Google Scholar 

  15. G. M. Batanov, V. A. Ivanov, M. E. Konyzhev, and A. A. Letunov, JETP Lett. 66, 170 1997.

    Article  ADS  Google Scholar 

  16. V. A. Ivanov, M. E. Konyzhev, V. P. Gavrilenko, and E. Oks, in Proceedings of the 5th International Workshop on Multipactor, Corona, and Passive Intermodulation in Space RF Hardware (MULCOPIM-2005), Noordwijk, 2005, p. 169.

    Google Scholar 

  17. V. A. Ivanov, A. S. Sakharov, and M. E. Konyzhev, in Proceedings of the VII International Workshop “Strong Microwaves: Sources and Applications,” Nizhny Novgorod, 2008, Vol. 2, p. 620.

    Google Scholar 

  18. V. A. Ivanov, A. S. Sakharov, and M. E. Konyzhev, in Proceedings of the VII International Workshop “Microwave Discharges: Fundamentals and Applications,” Hamamatsu, 2009, p. 34.

    Google Scholar 

  19. J. R. M. Vaughan, IEEE Trans. Electron Dev. 36, 1963 1989.

    Article  ADS  Google Scholar 

  20. I. A. Kossyi, G. S. Luk’yanchikov, V. E. Semenov, N. A. Zharova, D. Anderson, M. Lisak, and J. Puech, J. Phys. D 43, 345206 2010.

    Article  Google Scholar 

  21. A. S. Sakharov, V. A. Ivanov, Yu. A. Tarbeeva, and M. E. Konyzhev, Plasma Phys. Rep. 38, 1090 2012.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Sakharov.

Additional information

Original Russian Text © A.S. Sakharov, V.A. Ivanov, M.E. Konyzhev, 2014, published in Uspekhi Prikladnoi Fiziki, 2014, Vol. 2, No. 5, pp. 476–485.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakharov, A.S., Ivanov, V.A. & Konyzhev, M.E. Particle-in-cell simulation of multipactor discharge on a dielectric in a parallel-plate waveguide. Plasma Phys. Rep. 42, 610–618 (2016). https://doi.org/10.1134/S1063780X16060064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16060064

Navigation