Skip to main content
Log in

Drift and geodesic effects on the ion sound eigenmode in tokamak plasmas

  • Waves and Instabilities in Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A kinetic treatment of geodesic acoustic modes (GAMs), taking into account ion parallel dynamics, drift and the second poloidal harmonic effects is presented. It is shown that first and second harmonics of the ion sound modes, which have respectively positive and negative radial dispersion, can be coupled due to the geodesic and drift effects. This coupling results in the drift geodesic ion sound eigenmode with a frequency below the standard GAM continuum frequency. Such eigenmode may be able to explain the split modes observed in some experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Winsor, J. L. Jonson, and J. M. Dowson, Phys. Fluids 11, 2448 (1968).

    Article  ADS  Google Scholar 

  2. G. R. McKee, D. K. Gupta, R. J. Fonck, D. J. Schlossberg, M. W. Shafer, and P. Gohil, Plasma Phys. Controlled Fusion 48, 123 (2006).

    Article  ADS  Google Scholar 

  3. K. Hallatschek and D. Biskamp, Phys. Rev. Lett. 86, 1223 (2001).

    Article  ADS  Google Scholar 

  4. A. B. Mikhajlovskii, Nucl. Fusion 13, 259 (1973).

    Article  Google Scholar 

  5. F. Zonca, L. Chen, and R. A. Santoro, Plasma Phys. Controlled Fusion 38, 2011 (1996).

    Article  ADS  Google Scholar 

  6. H. Sugama and T.-H. Watanabe, Phys. Plasmas 13, 012501 (2006).

    Article  ADS  Google Scholar 

  7. C. Nguyen, X. Garbet, and A. I. Smolyakov, Phys. Plasmas 15, 112502 (2008).

    Article  ADS  Google Scholar 

  8. F. Zonca and L. Chen, Europhys. Lett. 83, 35001 (2008).

    Article  ADS  Google Scholar 

  9. N. N. Gorelenkov, M. A. Van Zeeland, H. L. Berk, N. A. Crocker, D. Darrow, E. Fredrickson, G.-Y. Fu, W. W. Heidbrink, J. Menard, and R. Nazikian, Phys. Plasmas 16, 056107 (2009).

    Article  ADS  Google Scholar 

  10. A. G. Elfimov, A. I. Smolyakov, A. V. Melnikov, and R. M. O. Galvão, Phys. Plasmas 20, 052116 (2013).

    Article  ADS  Google Scholar 

  11. H. Sugama and T.-H. Watanabe, J. Plasma Phys. 72, 825 (2006).

    Article  ADS  Google Scholar 

  12. P. Lauber, M. Brudgam, D. Curran, V. Igochine, K. Sassenberg, S. Gunter, M. Maraschek, M. Garcia- Munoz, and N. Hicks, Plasma Phys. Controlled Fusion 51, 124009 (2009).

    Article  ADS  Google Scholar 

  13. A. G. Elfimov, R. M. O. Galvão, and S. E. Sharapov, Phys. Plasmas 17, 110705 (2010).

    Article  ADS  Google Scholar 

  14. H. L. Berk, C. J. Boswell, D. Borba, A. C. A. Figueiredo, T. Johnson, M. F. F. Nave, S. D. Pinches, and S. E. Sharapov, Nucl. Fusion 46, 888 (2006).

    Article  ADS  Google Scholar 

  15. G. Fu, Phys. Rev. Lett. 101, 185002 (2008).

    Article  ADS  Google Scholar 

  16. Ya. I. Kolesnichenko, B. S. Lepiavko, and Yu. V. Yakovenko, Nucl. Fusion 50, 084011 (2010).

    Article  ADS  Google Scholar 

  17. R. Nazikian, G.-Y. Fu, M. E. Austin, H. L. Berk, R. V. Budny, N. N. Gorelenkov, W. W. Heidbrink, C. T. Holcomb, G. J. Kramer, G. R. McKee, M. A. Makowski, W. M. Solomon, M. Shafer, E. J. Strait, and M. A. Van Zeeland, Phys. Rev. Lett. 101, 185001 (2008).

    Article  ADS  Google Scholar 

  18. A. V. Melnikov, V. A. Vershkov, L. G. Eliseev, S. A. Grashin, A. V. Gudozhnik, L. I. Krupnik, S. E. Lysenko, V. A. Mavrin, S. V. Perfilov, D. A. Shelukhin, S. V. Soldatov, M. V. Ufimtsev, A. O. Urazbaev, G. Van Oost, and L. G. Zimeleva, Plasma Phys. Controlled Fusion 48, 87 (2006).

    Article  ADS  Google Scholar 

  19. A. V. Melnikov, L. G. Eliseev, S. V. Perfilov, S. E. Lysenko, R. V. Shurygin, V. N. Zenin, S. A. Grashin, L. I. Krupnik, A. S. Kozachek, R. Yu. Solomatin, A. G. Elfimov, A. I. Smolyakov, and M. V. Ufimtsev, Nucl. Fusion 55, 063001 (2015).

    Article  ADS  Google Scholar 

  20. S. Leerink, V. V. Bulanin, A. D. Gurchenko, E. Z. Gusakov, J. A. Heikkinen, S. J. Janhunen, S. I. Lashkul, A. B. Altukhov, L. A. Esipov, M. Yu. Kantor, T. P. Kiviniemi, T. Korpilo, D. V. Kuprienko, and A. V. Petrov, Phys. Rev. Lett. 109, 165001 (2012).

    Article  ADS  Google Scholar 

  21. G. D. Conway, C. Troster, B. Scott, and K. Hallatschek, Plasma Phys. Controlled Fusion 50, 055009 (2008).

    Article  ADS  Google Scholar 

  22. A. V. Melnikov, L. G. Eliseev, S. E. Lysenko, S. V. Perfilov, R. V. Shurygin, L. I. Krupnik, A. S. Kozachek, and A. I. Smolyakov, JETP Lett. 100, 555 (2014).

    Article  ADS  Google Scholar 

  23. A. Fujisawa, T. Ido, A. Shimizu, S. Okamura, K. Matsuoka, H. Iguchi, Y. Hamada, H. Nakano, S. Ohshima, K. Itoh, K. Hoshino, K. Shinohara, Y. Miura, Y. Nagashima, S.-I. Itoh, et al., Nucl. Fusion 47, 718 (2007).

    Article  ADS  Google Scholar 

  24. A. G. Elfimov, R. M. O. Galvão, and A. I. Smolyakov, Phys. Lett. A 378, 800 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  25. N. Miyato and Y. Kishimoto, Phys. Plasmas 11, 5557 (2004).

    Article  ADS  Google Scholar 

  26. A. G. Elfimov, Phys. Lett. A 378, 3533 (2014).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Elfimov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elfimov, A.G., Smolyakov, A.I., Melnikov, A.V. et al. Drift and geodesic effects on the ion sound eigenmode in tokamak plasmas. Plasma Phys. Rep. 42, 424–429 (2016). https://doi.org/10.1134/S1063780X16050032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16050032

Navigation