Skip to main content
Log in

Dust-ion-acoustic double layers in multi-ion dusty plasma

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A theoretical investigation has been made on nonplanar (cylindrical and spherical) dust-ionacoustic (DIA) double layers (DLs) in a multi-ion dusty plasma system containing inertial positive and negative ions and arbitrarily charged stationary dust. The dust particles have been considered as arbitrarily (either positively or negatively) charged in order to observe the effects of the dust polarity on the DIA DLs. The ion species were considered to be at different temperatures to observe the effects of the temperatures on that waves. The modified Gardner equation, which has been derived by employing the reductive perturbation method, has been used to analyze time-dependent nonplanar and planar DIA DLs. It has been found that the time evolution of DIA DLs is significantly modified not only by the nonplanar geometry, but also by the polarity, temperature, and mass ratio of the constituent particles. It has been also found that the amplitude of cylindrical DIA DL structures is larger than that of 1D planar ones, but smaller than that of the spherical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Shukla and V. P. Silin, Phys. Scr. 45, 508 (1992).

    Article  ADS  Google Scholar 

  2. A. Barkan, N. D’Angelo, and R. L. Merlino, Planet. Space Sci. 44, 239 (1996).

    Article  ADS  Google Scholar 

  3. P. K. Shukla and M. Rosenberg, Phys. Plasmas 6, 1038 (1999).

    Article  ADS  Google Scholar 

  4. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).

    Book  Google Scholar 

  5. R. L. Merlino and J. Goree, Phys. Today 57, 32 (2004).

    Article  Google Scholar 

  6. O. Ishihara, J. Phys. D 40, R121 (2007).

    Article  ADS  Google Scholar 

  7. P. K. Shukla and B. Eliasson, Rev. Mod. Phys. 81, 25 (2009).

    Article  ADS  Google Scholar 

  8. G. E. Morfill and A. V. Ivlev, Rev. Mod. Phys. 81, 1353 (2009).

    Article  ADS  Google Scholar 

  9. Y. Nakamura and A. Sharma, Phys. Plasmas 8, 3921 (2001).

    Article  ADS  Google Scholar 

  10. Y. Nakamura, H. Bailung, and P. K. Shukla, Phys. Rev. Lett. 83, 1602 (1999).

    Article  ADS  Google Scholar 

  11. Q. Z. Luo, N. D’Angelo, and R. L. Merlino, Phys. Plasmas 7, 3457 (1999).

    Google Scholar 

  12. C. Charles, Plasma Sources Sci. Technol. 16, R1 (2007).

    Article  ADS  Google Scholar 

  13. R. Bharuthram and P. K. Shukla, Planet. Space Sci. 40, 973 (1992).

    Article  ADS  Google Scholar 

  14. S. I. Popel and M. Y. Yu, Contrib. Plasma Phys. 35, 103 (1995).

    Article  ADS  Google Scholar 

  15. A. A. Mamun and P. K. Shukla, Phys. Plasmas 9, 1468 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  16. P. K. Shukla and A. A. Mamun, New J. Phys. 5, 17 (2003).

    Article  ADS  Google Scholar 

  17. S. I. Popel, A. P. Golub, T. V. Losseva, A. V. Ivlev, S. A. Khrapak, and G. E. Morfill, Phys. Rev. E 67, 056402 (2003).

    Article  ADS  Google Scholar 

  18. P. K. Shukla, Phys. Plasmas 7, 1044 (2000).

    Article  ADS  Google Scholar 

  19. S. I. Popel, A. P. Golub, and T. V. Losseva, JETP Lett. 74, 396 (2001).

    Article  Google Scholar 

  20. A. A. Mamun and P. K. Shukla, IEEE Trans. Plasma Sci. 30, 720 (2002).

    Article  ADS  Google Scholar 

  21. A. A. Mamun, P. K. Shukla, and B. Eliasson, Phys. Plasmas 16, 114503 (2009).

    Article  ADS  Google Scholar 

  22. S. S. Duha and A. A. Mamun, Phys. Lett. A 373, 1287 (2009).

    Article  ADS  MATH  Google Scholar 

  23. A. A. Mamun, P. K. Shukla, and B. Eliasson, Phys. Rev. E 80, 046406 (2009).

    Article  ADS  Google Scholar 

  24. H. Alinejad and A. A. Mamun, Phys. Plasmas 17, 123704 (2010).

    Article  ADS  Google Scholar 

  25. S. Ghosh and R. Bharuthram, Astrophys. Space Sci. 314, 121 (2008).

    Article  ADS  MATH  Google Scholar 

  26. R. Roychoudhury and P. Chatterjee, Phys. Plasmas 6, 406 (1999).

    Article  ADS  Google Scholar 

  27. K. Sauer, A. Bogdanvo, and K. Baumgärtel, Geophys. Rev. Lett. 21, 2255 (1994).

    Article  ADS  Google Scholar 

  28. K. Sauer, E. Dubinin, K. Baumgärtel, and A. Bogdanvo, Geophys. Rev. Lett. 23, 3643 (1996).

    Article  ADS  Google Scholar 

  29. K. Sauer, E. Dubinin, and J. F. McKenzie, Nonlin. Processes Geophys. 10, 121 (2003).

    Article  ADS  Google Scholar 

  30. J. Jacquinot, B. D. McVey, and J. E. Scharer, Phys. Rev. Lett. 39, 88 (1977).

    Article  ADS  Google Scholar 

  31. A. Weingarten, R. Arad, Y. Maron, and A. Fruchtman, Phys. Rev. Lett. 87, 115004 (2001).

    Article  ADS  Google Scholar 

  32. N. Watanabe, T. Watari, S. Hiroe, S. Hidekuma, R. Kumazawa, K. Adati, and T. Sato, IEEE Trans. Plasma Sci. 20, 333 (1978).

    Google Scholar 

  33. Y. Nakamura, T. Odagiri, and I. Tsukabayashi, Plasma Phys. Controlled Fusion 39, 105 (1997).

    Article  ADS  Google Scholar 

  34. K. E. Lonngren, IEEE Trans. Plasma Sci. 25, 943 (1983).

    Google Scholar 

  35. Y. Nakamura, IEEE Trans. Plasma Sci. 10, 180 (1982).

    Article  ADS  Google Scholar 

  36. G. C. Das and S. G. Tagare, IEEE Trans. Plasma Sci. 17, 1025 (1975).

    Google Scholar 

  37. S. Watanabe, J. Phys. Soc. Jpn. 53, 950 (1984).

    Article  ADS  Google Scholar 

  38. M. Tajiri and M. Tuda, J. Phys. Soc. Jpn. 54, 19 (1985).

    Article  ADS  Google Scholar 

  39. G. O. Ludwig, J. L. Ferreira, and Y. Nakamura, Phys. Rev. Lett. 52, 275 (1984).

    Article  ADS  Google Scholar 

  40. Y. Nakamura and I. Tsukabayashi, Phys. Rev. Lett. 52, 2356 (1984).

    Article  ADS  Google Scholar 

  41. I. L. Cooney, M. T. Gavin, I. Tao, and K. E. Lonngren, IEEE Trans. Plasma Sci. 19, 1259 (1991).

    Article  ADS  Google Scholar 

  42. Q. Z. Luo, N. D’Angelo, and R. L. Merlino, Phys. Plasmas 5, 2868 (1998).

    Article  ADS  Google Scholar 

  43. S. H. Kim and R. L. Merlino, Phys. Rev. E 76, 035401 (2007).

    Article  ADS  Google Scholar 

  44. P. K. Shukla, Phys. Plasmas 8, 1791 (2001).

    Article  ADS  Google Scholar 

  45. D. A. Mendis and M. Rosenberg, Ann. Rev. Astron. Astrophys. 32, 419 (1994).

    Article  ADS  Google Scholar 

  46. V. N. Tsytovich, G. E. Morfill, and H. Thomas, Plasma Phys. Rep. 28, 623 (2002).

    Article  ADS  Google Scholar 

  47. R. L. Merlino, A. Barkan, C. Thompson, and N. D’Angelo, Phys. Plasmas 5, 1607 (1998).

    Article  ADS  Google Scholar 

  48. A. Homann, A. Melzer, S. Peters, and A. Piel, Phys. Rev. E 56, 7138 (1997).

  49. G. E. Morfill, V. N. Tsytovich, and H. Thomas, Plasma Phys. Rep. 29, 1 (2003).

    Article  ADS  Google Scholar 

  50. V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, and G. E. Morfill, Phys. Rep. 421, 1 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  51. B. A. Klumov, A. V. Ivlev, and G. Morfill, JETP Lett. 78, 300 (2003).

    Article  ADS  Google Scholar 

  52. A. A. Mamun and P. K. Shukla, Phys. Plasmas 10, 1518 (2003).

    Article  ADS  Google Scholar 

  53. S. H. Kim and R. L. Merlino, Phys. Plasmas 13, 052118 (2006).

    Article  ADS  Google Scholar 

  54. R. L. Merlino and S. H. Kim, Appl. Phys. Lett. 89, 091501 (2006).

    Article  ADS  Google Scholar 

  55. F. Sayed, M. M. Haider, A. A. Mamun, P. K. Shukla, B. Eliasson, and N. Adhikary, Phys. Plasmas 15, 063701 (2008).

    Article  ADS  Google Scholar 

  56. F. Verheest, M. A. Hellberg, and I. Kourakis, Phys. Plasmas 15, 112309 (2008).

    Article  ADS  Google Scholar 

  57. A. A. Mamun, R. A. Cairns, and P. K. Shukla, Phys. Lett. A 373, 2355 (2009).

    Article  ADS  MATH  Google Scholar 

  58. S. S. Duha, Phys. Plasmas 16, 113701 (2009).

    Article  ADS  Google Scholar 

  59. A. A. Mamun and P. K. Shukla, Phys. Plasmas 9, 1468 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  60. A. A. Mamun and P. K. Shukla, Phys. Rev. E 80, 037401 (2009).

    Article  ADS  Google Scholar 

  61. A. A. Mamun and P. K. Shukla, Europhys. Lett. 87, 25001 (2009).

    Article  ADS  Google Scholar 

  62. H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).

    Article  ADS  Google Scholar 

  63. F. Deeba and A. A. Mamun, Open J. Acoustics 1, 70 (2011).

    Article  ADS  Google Scholar 

  64. A. A. Mamun and F. Deeba, Plasma Phys. Rep. 38, 1 (2012).

    Article  Google Scholar 

  65. S. I. Popel, S. N. Andreev, A. A. Gisko, A. P. Golub, and T. V. Losseva, Plasma Phys. Rep. 30, 284 (2004).

    Article  ADS  Google Scholar 

  66. S. I. Popel, T. V. Losseva, A. P. Golub, R. L. Merlino, and S. N. Andreev, Contrib. Plasma Phys. 45, 461 (2005).

    Article  ADS  Google Scholar 

  67. F. Deeba, S. Tasnim, and A. A. Mamun, IEEE Trans. Plasma Sci. 40, 2247 (2012).

    Article  ADS  Google Scholar 

  68. A. A. Mamun, R. A. Cairns, and P. K. Shukla, Phys. Plasmas 3, 702 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  69. S. Ghosh, S. Sarkar, M. Khan, and M. R. Gupta, Phys. Lett. A 274, 162 (2000).

    Article  ADS  Google Scholar 

  70. S. Ghosh, S. Sarkar, M. Khan, and M. R. Gupta, Phys. Plasmas 7, 3594 (2000).

    Article  ADS  Google Scholar 

  71. S. Ghosh, T. K. Chaudhuri, S. Sarkar, M. Khan, and M. R. Gupta, Phys. Rev. E 65, 037401 (2002).

    Article  ADS  Google Scholar 

  72. M. Tribeche, Phys. Plasmas 12, 072304 (2005).

    Article  ADS  Google Scholar 

  73. M. Tribeche, Phys. Plasmas 15, 053702 (2008).

    Article  ADS  Google Scholar 

  74. S. Maxon and J. Viecelli, Phys. Rev. Lett. 32, 4 (1974).

    Article  ADS  Google Scholar 

  75. N. C. Lee, Phys. Plasmas 16, 042316 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Deeba.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamun, A.A., Deeba, F. Dust-ion-acoustic double layers in multi-ion dusty plasma. Plasma Phys. Rep. 41, 667–676 (2015). https://doi.org/10.1134/S1063780X1508005X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1508005X

Keywords

Navigation