Skip to main content
Log in

Use of additional helium puffing for the diagnostics of plasma parameters at the FT-2 tokamak

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The experiments carried out at the FT-2 tokamak in which additional pulsed puffing of helium into the hydrogen plasma was used for diagnostic purposes are considered. To estimate the necessary content of helium ions in the experiments on studying short-scale plasma oscillations, the ionization-recombination balance was simulated numerically under the assumption of a toroidally homogeneous influx of the working gas onto the boundary of the plasma column. In these simulations, the effective density of the neutral gas incident on the plasma boundary was determined by the iteration method, which made it possible to provide agreement between the obtained solution and the experimental discharge conditions. In particular, the correspondence of the determined admixture content to both the plasma quasineutrality condition and the value of the effective charge Z eff, as well as agreement between the calculated and measured plasma density profiles, was ensured. The simulations were performed under the assumption of anomalous diffusion coefficients for all plasma components. The temporal variations of the ionization-recombination balance were checked by comparing them with the measured spectra of radiation in the HeI, HeII, and Hα lines. In the current drive experiments, variations in n e (r) at the discharge periphery were examined by the method based on the proportionality of the intensity ratio of the helium spectral lines, HeI(668 nm)/HeI(728 nm), to the plasma density. In these calculations, the factors relating the intensity ratio of these lines to the plasma density were taken from the literature on spectral diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Field, P. G. Carolan, N. J. Conway, and M. G. O’Mullane, Rev. Sci. Instrum. 70, 355 (1999).

    Article  ADS  Google Scholar 

  2. I. D. Paton, PhD Thesis (University of Strathclyde, Glasgow, 2005), http://www.adas.ac.uk/theses/patonthesis.pdf

  3. D. G. Whyte, D. A. Humphreys, and P. L. Taylor, Phys. Plasmas 7, 4052 (2000).

    Article  ADS  Google Scholar 

  4. E. Hintz and B. Schweer, Plasma Phys. Controlled Fusion 37, A87 (1995).

    Article  ADS  Google Scholar 

  5. J.-W. Ahn, D. Craig, G. Fiksel, et al., Phys. Plasmas 14, 083301 (2007).

    Article  ADS  Google Scholar 

  6. S. J. Davies and P. D. Morgan, Nucl. Mater. 241–243, 426 (1997).

    Google Scholar 

  7. Y. Andrew, S. J. Davies, D. Elder, et al., Nucl. Mater. 266–269, 1234 (1999).

    Article  Google Scholar 

  8. H. Kubo, M. Goto, H. Takenaga, et al., Plasma Fusion Res. 75, 945 (1999).

    Article  Google Scholar 

  9. B. Branas, D. Tafalla, F. L. Tabares, and P. Ortiz, Rev. Sci. Instrum. 72, 602 (2001).

    Article  ADS  Google Scholar 

  10. M. Goto, J. Quant. Spectrosc. Radiat. Transfer 76, 331 (2003).

    Article  ADS  Google Scholar 

  11. E. de la Cal, Plasma Phys. Controlled Fusion 43, 813 (2001).

    Article  ADS  Google Scholar 

  12. F. B. Rosmej, N. Ohno, S. Takamura, and S. Kajita, Contrib. Plasma Phys. 48, 243 (2008).

    Article  ADS  Google Scholar 

  13. R. J. Maqueda, G. A. Wurden, D. P. Stotler, et al., Rev. Sci. Instrum. 74, 2020 (2003).

    Article  ADS  Google Scholar 

  14. M. Proschek, S. Menhart, H. D. Falter, et al., Preprint No. EFDA-JET-PR(00)13 (2000).

  15. J.-W. Ahn, D. Craig, G. Fiksel, et al., Phys. Plasmas 14, 083301 (2007).

    Article  ADS  Google Scholar 

  16. A. G. Frank, V. P. Gavrilenko, N. P. Kyrie, and E. Oks, J. Phys. B 39, 5119 (2006).

    Article  ADS  Google Scholar 

  17. M. Goto, S. Morita, K. Sawada, et al., Phys. Plasmas 10, 1402 (2003).

    Article  ADS  Google Scholar 

  18. K. Saito, R. Kumazawa, T. Mutoh, et al., Nucl. Fusion 41, 1021 (2001).

    Article  ADS  Google Scholar 

  19. S. I. Lashkul, A. B. Altukhov, V. V. Bulanin, et al., in Proceedings of the 7th International Workshop “Strong Microwaves: Sources and Applications,” Ed. by A. G. Litvak (Inst. of Applied Physics, Russ. Acad. Sci., Nizhny Novgorod, 2009), Vol. 2, p. 312.

    Google Scholar 

  20. S. I. Lashkul, A. B. Altukhov, A. D. Gurchenko, et al., Plasma Phys. Rep. 36, 751 (2010).

    Article  ADS  Google Scholar 

  21. A. D. Gurchenko, E. Z. Gusakov, D. V. Kouprienko, et al., Plasma Phys. Controlled Fusion 52, 035010 (2010).

    Article  ADS  Google Scholar 

  22. A. D. Gurchenko, E. Z. Gusakov, A. B. Altukhov, et al., in Proceedings of the 38th EPS Conference on Controlled Fusion and Plasma Physics, Strasbourg, 2011, p. 2.127.

  23. A. D. Gurchenko, E. Z. Gusakov, S. I. Lashkul, et al., in Proceedings of the 38th EPS Conference on Controlled Fusion and Plasma Physics, Strasbourg, 2011, p. 2.128.

  24. Yu. N. Dnestrovskij and D. P. Kostomarov, Numerical Simulation of Plasmas (Nauka, Moscow, 1982; Springer-Verlag, New York, 1986).

    Google Scholar 

  25. http://physics.nist.gov/PhysRefData; http://ebookbrowse.com/3780-adas-database-pdf-d325717319

  26. D. V. Kuprienko, A. B. Altukhov, A. D. Gurchenko, et al., Plasma Phys. Rep. 36, 371 (2010).

    Article  ADS  Google Scholar 

  27. V. E. Golant, A. P. Zhilinskii, and I. E. Sakharov, Fundamentals of Plasma Physics (Atomizdat, Moscow, 1977; Wiley, New York, 1980), Sect. 9.8.

    Google Scholar 

  28. M. Yu. Kantor, L. A. Esipov, D. V. Kouprienko, et al., in Proceedings of the 13th International Symposium on Laser-Aided Plasma Diagnostics, Takayama, 2007, p. 104.

  29. B. Schweer, Trans. Fusion Sci. Technol. 49, 404 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.I. Lashkul, A.B. Altukhov, V.V. D’yachenko, L.A. Esipov, M.Yu. Kantor, D.V. Kuprienko, A.D. Lebedev, Ya.A. Nikerman, A.Yu. Popov, 2012, published in Fizika Plazmy, 2012, Vol. 38, No. 11, pp. 923–936.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lashkul, S.I., Altukhov, A.B., D’yachenko, V.V. et al. Use of additional helium puffing for the diagnostics of plasma parameters at the FT-2 tokamak. Plasma Phys. Rep. 38, 851–862 (2012). https://doi.org/10.1134/S1063780X12110062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X12110062

Keywords

Navigation