Skip to main content
Log in

Quantum processes in short and intensive electromagnetic fields

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

This work provides an overview of our recent results in studying two most important and widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g. laser) wave field or generalized Breit–Wheeler process, and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that the probabilities of particle production in both processes are determined by interplay of two dynamical effects, where the first one is related to the shape and duration of the pulse and the second one is non-linear dynamics of the interaction of charged fermions with a strong electromagnetic field. We elaborate suitable expressions for the production probabilities and cross sections, convenient for studying evolution of the plasma in presence of strong electromagnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).

    Article  ADS  Google Scholar 

  2. A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177–1228 (2012).

    Article  ADS  Google Scholar 

  3. V. Yanovsky, P. Rousseau, T. Planchon, et al., “Ultrahigh intensity 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109–2114 (2008).

    Article  ADS  Google Scholar 

  4. http://www.clf.stfc.ac.uk/CLF/.

  5. http://www.eli-beams.eu.

  6. http://www.hiper-laser.org.

  7. https://www.ipfran.ru/english/science/las_phys.html.

  8. A. L. Cavalieri, E. Goulielmakis, B. Horvath, et al., “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband softx-ray harmonic continua,” New J. Phys. 9, 242 (2007).

    Article  ADS  Google Scholar 

  9. Z. Major, S. Klingebiel, C. Krobol, et al., “Status of the Petawatt Field Synthesizer pump-seed synchronization measurements,” AIP Conf. Proc. 1228, 117–122 (2010).

    Article  ADS  Google Scholar 

  10. F. Mackenroth and A. Di Piazza, “Nonlinear Compton scattering in ultra-short laser pulses,” Phys. Rev., A 83, 032106 (2011).

    Article  ADS  Google Scholar 

  11. F. Feng, S. Gilbertson, H. Mashiko, et al., “Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers,” Phys. Rev. Lett. 103, 183901 (2009).

    Article  ADS  Google Scholar 

  12. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  13. H. R. Reiss, “Absorbtion of light by light,” J. Math. Phys. 3, 59–67 (1962).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. H. R. Reiss, “Production of electron pairs from a zeromass state,” Phys. Rev. Lett. 26, 1072–1075 (1971).

    Article  ADS  Google Scholar 

  15. A. I. Nikishov and V. I. Ritus, “Quantum processes in field of a plane electromagnetic wave and a constant field,” Sov. Phys. JETP 19, 529–541 (1964).

    MathSciNet  Google Scholar 

  16. N. V. Narozhny, A. I. Nikishov, and V. I. Ritus, “Quantum processes in field of a circularly polarized electromagnetic wave,” Sov. Phys. JETP 20, 622–629 (1965).

    Google Scholar 

  17. V. I. Ritus, “Quantum effects in the interaction of elementary particles with an intensive electromagnetic field,” J. Sov. Laser Res. (US) 6 (5), 497–617 (1985).

    Article  Google Scholar 

  18. M. Boca and V. Florescu, “Nonlinear Compton scattering with a laser pulse,” Phys. Rev., A 80, 053403 (2009).

    Article  ADS  Google Scholar 

  19. T. Heinzl, D. Seipt, and B. Kämpfer, “Beam-shape effects in conlinear Compton and Thomson scattering,” Phys. Rev., A 81, 022125 (2010).

    Article  ADS  Google Scholar 

  20. D. Seipt and B. Kämpfer, “Non-linear Compton scattering of ultrashort and ultraintense laser pulses,” Phys. Rev., A 83, 022101 (2011).

    Article  ADS  Google Scholar 

  21. V. Dinu, T. Heinzl, and A. Ilderton, “Infra-red divergences in plane wave backgrounds,” Phys. Rev., D 86, 085037 (2012).

    Article  ADS  Google Scholar 

  22. D. Seipt and B. Kämpfer, “Two-photon Compton process in pulsed intense laser fields,” Phys. Rev., D 85, 101701 (2012).

    Article  ADS  Google Scholar 

  23. K. Krajewska and J. Z. Kaminski, “Compton crocess in intense short laser pulses,” Phys. Rev., A 85, 062102–111 (2012).

    Article  ADS  Google Scholar 

  24. A. I. Titov, B. Kämpfer, T. Shibata, et al., “Laser pulseshape dependence of Compton scattering,” Eur. Phys. J., D 68, 299 (2014).

    Article  ADS  Google Scholar 

  25. A. I. Titov, H. Takabe, B. Kämpfer, and A. Hosaka, “Enhanced subthreshold electron-positron production in short laser pulses,” Phys. Rev. Lett. 108, 240406 (2012).

    Article  ADS  Google Scholar 

  26. A. I. Titov, B. Kämpfer, H. Takabe, and A. Hosaka, “Breit–Wheeler process in very short electromagnetic pulses,” Phys. Rev., A 87, 042106 (2013).

    Article  ADS  Google Scholar 

  27. T. Nousch, D. Seipt, B. Kämpfer, and A. I. Titov, “Pair production in short laser pulses near threshold,” Phys. Lett., B 715, 246–250 (2012).

    Article  ADS  Google Scholar 

  28. K. Krajewska and J. Z. Kaminski, “Breit–Wheeler process in intense short laser pulses,” Phys. Rev., A 86, 052104 (2012).

    Article  ADS  Google Scholar 

  29. S. Villalba-Chavez and C. Müller, “Photo-production of scalar particles in the field of a circularly polarized laser beam,” Phys. Lett., B 718, 992–997 (2013).

    Article  ADS  MATH  Google Scholar 

  30. A. M. Fedotov, N. B. Narozhny, G. Mourou, and G. Korn, “Limitations on the attainable intensity of high power lasers,” Phys. Rev. Lett. 105, 080402 (2010).

    Article  ADS  Google Scholar 

  31. N. V. Elkina, A. M. Fedotov, I. Y. Kostyukov, et al., “QED cascades induced by circularly polarized laser fields,” Phys. Rev. ST Accel. Beams 14, 054401 (2011).

    Article  ADS  Google Scholar 

  32. A. Ilderton, P. Johansson, and M. Marklund, “Pair annihilation in laser pulses: optical vs. XFEL regimes,” Phys. Rev., A 84, 032119 (2011).

    Article  ADS  Google Scholar 

  33. H. Hu, C. Müller, and C. H. Keitel, “Complete QED theory of multiphoton trident pair production in strong laser fields,” Phys. Rev. Lett. 105, 080401 (2010).

    Article  ADS  Google Scholar 

  34. A. Ilderton, “Trident pair production in strong laser pulses,” Phys. Rev. Lett. 106, 020404 (2011).

    Article  ADS  Google Scholar 

  35. J. G. Kirk, A. R. Bell, and I. Arka, “Pair production in counter-propagating laser beams,” Plasma Phys. Control. Fusion 51, 085008 (2009).

    Article  ADS  Google Scholar 

  36. S. V. Bulanov, T. Zh. Esirkepov, Y. Hayashi, et al., “On the design of experiments for the study of extreme field limits in the interaction of laser with ultrarelativistic electron beam,” Nucl. Instrum. Meth., A 660, 31–42 (2011).

    Article  ADS  Google Scholar 

  37. R. Ruffini, G. Vereshchagin, and S-Sh. Xue, “Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes,” Phys. Rept. 487, 1–140 (2010).

    Article  ADS  Google Scholar 

  38. G. Breit and J. A. Wheeler, “Collision of two light quanta,” Phys. Rev. 46, 1087–1091 (1934).

    Article  ADS  MATH  Google Scholar 

  39. D. B. Blaschke, B. Kämpfer, S. M. Schmidt, et al., “Properties of the electron-positron plasma created from vacuum in a strong laser field, I: Quasiparticle excitations,” Phys. Rev., D 88, 045017 (2013).

    Article  ADS  Google Scholar 

  40. J. S. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664–679 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. G. V. Dunne, H. Gies, and R. Schützhold, “Catalysis of Schwinger vacuum pair production,” Phys. Rev., D 80, 111301 (2009).

    Article  ADS  Google Scholar 

  42. F. Hebenstreit, R. Alkofer, and H. Gies, “Particle selfbunching in the Schwinger effect in spacetime-dependent electric fields,” Phys. Rev. Lett. 107, 180403 (2011).

    Article  ADS  Google Scholar 

  43. F. Mackenroth, A. Di Piazza, and C. H. Keitel, “Determining the carrier-envelope phase of intense few-cycle laser pulses,” Phys. Rev. Lett. 105, 063903 (2010).

    Article  ADS  Google Scholar 

  44. F. Hebenstreit, R. Alkofer, G. V. Dunne, and H. Gies, “Momentum signatures for Schwinger pair production in short laser pulses with a subcycle structure,” Phys. Rev. Lett. 102, 150404 (2009).

    Article  ADS  Google Scholar 

  45. N. B. Narozhnyi and M. S. Fofanov, “Photon emission by an electron in a collision with a short focused laser pulse,” J. Exp.Theor. Phys. 83, 14–23 (1996).

    ADS  Google Scholar 

  46. T. Heinzl and A. Ilderton, “A Lorentz and gauge invariant measure of laser intensity,” Opt. Commun. 282, 1879–1883 (2009).

    Article  ADS  Google Scholar 

  47. D. L. Burke et al. (SLAC E-144 Experiment Collab.), “Positron production in multiphoton light by light scattering,” Phys. Rev. Lett. 79, 1626 (1997).

    Article  ADS  Google Scholar 

  48. M. E. Grypeos, C. Koutroulos, V. K. Lukyanov, and A. V. Shebeko, “Properties of Fermi and symmetrized Fermi functions and applications in nuclear physics,” Phys. Part. Nucl. 32, 779–812 (2001).

    Google Scholar 

  49. D. M. Volkov, “Uber eine Klasse von Losungen der Diracschen Gleichung,” Z. Phys. 94, 250–260 (1935).

    Article  ADS  MATH  Google Scholar 

  50. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, 2nd ed., Course of Theoretical Physics, vol. 4 (Pergamon Press Ltd., Oxford, New York, 1982).

    Google Scholar 

  51. G. N. Watson, A Treatise of the Theory of Bessel Functions, 2nd Ed. (The University Press, Cambridge, 1944).

    MATH  Google Scholar 

  52. D. Seipt and B. Kämpfer, “Laser-assisted Compton scattering of x-ray photons,” Phys. Rev., A 89, 023433 (2014).

    Article  ADS  Google Scholar 

  53. A. Jochmann, A. Irman, M. Bussmann, et al., “High resolution energy-angle correlation measurement of hard X rays from laser-Thomson backscattering,” Phys. Rev. Lett. 111, 114803 (2013).

    Article  ADS  Google Scholar 

  54. D. Seipt and B. Kämpfer, “Asymmetries of azimuthal photon distributions in non-linear Compton scattering in ultra-short intense laser pulses,” Phys. Rev., A 88, 012127 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Titov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titov, A.I., Kämpfer, B., Hosaka, A. et al. Quantum processes in short and intensive electromagnetic fields. Phys. Part. Nuclei 47, 456–487 (2016). https://doi.org/10.1134/S1063779616030059

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616030059

Keywords

Navigation