Skip to main content
Log in

Relaxation of the chiral imbalance and the generation of magnetic fields in magnetars

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The model for the generation of magnetic fields in a neutron star, based on the magnetic field instability caused by the electroweak interaction between electrons and nucleons, is developed. Using the methods of the quantum field theory, the helicity flip rate of electrons in their scattering off protons in dense matter of a neutron star is calculated. The influence of the electroweak interaction between electrons and background nucleons on the process of the helicity flip is studied. The kinetic equation for the evolution of the chiral imbalance is derived. The obtained results are applied for the description of the magnetic fields evolution in magnetars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mereghetti, J. A. Pons, and A. Melatos, Space Sci. Rev. 191, 315 (2015); arXiv:1503.06313.

    Article  ADS  Google Scholar 

  2. R. C. Duncan and C. Thompson, Astrophys. J. 392, L9 (1992).

    Article  ADS  Google Scholar 

  3. J. Vink and L. Kuiper, Mon. Not. R. Astron. Soc. Lett. 370, L14 (2006); astro-ph/0604187.

    Article  ADS  Google Scholar 

  4. C. Thompson, M. Lyutikov, and S. R. Kulkarni, Astrophys. J. 574, 332 (2002); astroph/0110677.

    Article  ADS  Google Scholar 

  5. G. Sigl and N. Leite, J. Cosmol. Astropart. Phys. 01, 025 (2016); arXiv:1507.04983.

    Article  ADS  Google Scholar 

  6. N. Yamamoto, Phys. Rev. D 93, 065017 (2016); arXiv:1511.00933.

    Article  ADS  MathSciNet  Google Scholar 

  7. V. A. Miransky and I. A. Shovkovy, Phys. Rep. 576, 1 (2015); arXiv:1503.00732.

    Article  ADS  Google Scholar 

  8. J. Charbonneau and A. Zhitnitsky, J. Cosmol. Astropart. Phys. 08, 010 (2010); arXiv:0903.4450.

    Article  ADS  Google Scholar 

  9. A. Vilenkin, Phys. Rev. D 22, 3067 (1980).

    Article  ADS  Google Scholar 

  10. V. A. Rubakov, Prog. Theor. Phys. 75, 366 (1986).

    Article  ADS  Google Scholar 

  11. A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Phys. Rev. Lett. 109, 111602 (2012); arXiv:1204.3604.

    Article  ADS  Google Scholar 

  12. M. Dvornikov and V. B. Semikoz, Phys. Rev. D 91, 061301 (2015); arXiv:1410.6676.

    Article  ADS  Google Scholar 

  13. M. Dvornikov and V. B. Semikoz, J. Cosmol. Astropart. Phys. 05, 032 (2015); arXiv:1503.04162.

    Article  ADS  Google Scholar 

  14. M. Dvornikov and V. B. Semikoz, Phys. Rev. D 92, 083007 (2015); arXiv:1507.03948.

    Article  ADS  Google Scholar 

  15. S. Weinberg, The Quantum Theory of Fields, Vol. 2: Modern Applications (Cambridge Univ. Press, New York, 1996).

    Book  MATH  Google Scholar 

  16. A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer, Heidelberg, 1984).

    Book  Google Scholar 

  17. D. C. Kelly, Astrophys. J. 179, 599 (1973).

    Article  ADS  Google Scholar 

  18. C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980).

    MATH  Google Scholar 

  19. E. M. Lifschitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

    Google Scholar 

  20. V. B. Berestetskii, E. M. Lifschitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Nauka, Moscow, 1989; Pergamon, Oxford, 1982).

    Google Scholar 

  21. D. Grabowska, D. B. Kaplan, and S. Reddy, Phys. Rev. D 92, 085035 (2015); arXiv:1409.3602.

    Article  ADS  Google Scholar 

  22. L. D. Landau and E. M. Lifschitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

    Google Scholar 

  23. O. Y. Gnedin, D. G. Yakovlev, and A. Y. Potekhin, Mon. Not. R. Astron. Soc. 324, 725 (2001); astroph/ 0012306.

    Article  ADS  Google Scholar 

  24. C. J. Pethick, Rev. Mod. Phys. 64, 1133 (1992).

    Article  ADS  Google Scholar 

  25. D. E. Kharzeev, J. Liao, S. A. Voloshin, et al., Prog. Part. Nucl. Phys. 88, 1 (2016); arXiv:1511.04050.

    Article  ADS  Google Scholar 

  26. S. D. Danilov and D. Gurarie, Phys. Usp. 43, 863 (2000).

    Article  ADS  Google Scholar 

  27. S. G. Moiseenko and G. S. Bisnovatyi-Kogan, Int. J. Mod. Phys. D 17, 1411 (2008); arXiv:0801.2471.

    Article  ADS  Google Scholar 

  28. A. Grigoriev, S. Shinkevich, A. Studenikin, et al., Grav. Cosmol. 14, 248 (2008); hep-ph/0611128.

    Article  ADS  Google Scholar 

  29. E. Braaten and D. Segel, Phys. Rev. D 48, 1478 (1993); hep-ph/9302213.

    Article  ADS  Google Scholar 

  30. D. G. Yakovlev and C. J. Pethick, Ann. Rev. Astron. Astrophys. 42, 169 (2004); astro-ph/0402143.

    Article  ADS  Google Scholar 

  31. L. D. Landau and E. M. Lifschitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  32. L. D. Landau and E. M. Lifschitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

    Google Scholar 

  33. I. M. Ternov, V. G. Bagrov, and O. F. Dorofeev, Sov. Phys. J. 11, 50 (1968).

    Article  Google Scholar 

  34. B. F. Yu, Q. Gao, B. Zhang, et al., Int. J. Refrig. 26, 622 (2003).

    Article  Google Scholar 

  35. S. R. de Groot, W. A. van Leeuven, and Ch. G. van Weert, Relativistic Kinetic Theory: Principles and Applications (North-Holland, Amsterdam, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Dvornikov.

Additional information

The article was translated by the authors.

Published in Russian in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 150, No. 6, pp. 1113–1126.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvornikov, M.S. Relaxation of the chiral imbalance and the generation of magnetic fields in magnetars. J. Exp. Theor. Phys. 123, 967–978 (2016). https://doi.org/10.1134/S1063776116150024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116150024

Navigation