Skip to main content
Log in

Temperature dependence of the electronic structure of La2CuO4 in the multielectron LDA+GTB approach

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The band structure of La2CuO4 in antiferromagnetic and paramagnetic phases is calculated at finite temperatures by the multielectron LDA+GTB method. The temperature dependence of the band spectrum and the spectral weight of Hubbard fermions is caused by a change in the occupation numbers of local multielectron spin-split terms in the antiferromagnetic phase. A decrease in the magnetization of the sublattice with temperature gives rise to new bands near the bottom of the conduction band and the top of the valence band. It is shown that the band gap decreases with increasing temperature, but La2CuO4 remains an insulator in the paramagnetic phase as well. These results are consistent with measurements of the red shift of the absorption edge in La2CuO4 with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Sadovskii, Phys.–Usp. 44 (5), 515 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  2. J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, Ruixing Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. V. Zimmermann, E. M. Forgan, and S. M. Hayden, Nat. Phys. 8, 871 (2012).

    Article  Google Scholar 

  3. G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N. B. Brookes, G. M. De Luca, A. Frano, D. G. Hawthorn, F. He, T. Loew, M. Moretti Sala, D. C. Peets, M. Salluzzo, E. Schierle, et al., Science (Washington) 337, 821 (2012).

    Article  ADS  Google Scholar 

  4. E. Blackburn, J. Chang, A. H. Said, B. M. Leu, Ruixing Liang, D. A. Bonn, W. N. Hardy, E. M. Forgan, and S. M. Hayden, Phys. Rev. B: Condens. Matter 88, 054506 (2013).

    Article  ADS  Google Scholar 

  5. R. Comin, A. Frano, M. M. Yee, Y. Yoshida, H. Eisaki, E. Schierle, E. Weschke, R. Sutarto, F. He, A. Soumyanarayanan, Yang He, M. Le Tacon, I. S. Elfimov, Jennifer E. Hoffman, G. A. Sawatzky, et al., Science (Washington) 343, 390 (2014).

    Article  ADS  Google Scholar 

  6. C. M. Varma, Phys. Rev. B: Condens. Matter 55, 14554 (1997)

    Article  ADS  Google Scholar 

  7. C. M. Varma, Nature (London) 468, 184 (2010).

    Article  ADS  Google Scholar 

  8. R. O. Zaitsev, Sov. Phys. JETP 43 (3), 574 (1976).

    ADS  Google Scholar 

  9. A. F. Barabanov, A. A. Kovalev, O. V. Urazaev, A. M. Belemuk, and R. Hayn, J. Exp. Theor. Phys. 92 (4), 677 (2001).

    Article  ADS  Google Scholar 

  10. V. V. Val’kov and D. M. Dzebisashvili, J. Exp. Theor. Phys. 100 (3), 608 (2005).

    Article  ADS  Google Scholar 

  11. N. M. Plakida and V. S. Oudovenko, J. Exp. Theor. Phys. 104 (2), 230 (2007).

    Article  ADS  Google Scholar 

  12. V. A. Gavrichkov, S. G. Ovchinnikov, A. A. Borisov, and E. G. Goryachev, J. Exp. Theor. Phys. 91 (2), 369 (2000).

    Article  ADS  Google Scholar 

  13. M. M. Korshunov, V. A. Gavrichkov, S. G. Ovchinnikov, Z. V. Pchelkina, I. A. Nekrasov, M. A. Korotin, and V. I. Anisimov, J. Exp. Theor. Phys. 99 (3), 559 (2004).

    Article  ADS  Google Scholar 

  14. I. M. Lifshits, Sov. Phys. JETP 11, 1130 (1960).

    Google Scholar 

  15. M. M. Korshunov and S. G. Ovchinnikov, Eur. Phys. J. B 57, 271 (2007).

    Article  ADS  Google Scholar 

  16. S. G. Ovchinnikov, M. M. Korshunov, and E. I. Shneider, J. Exp. Theor. Phys. 109 (5), 775 (2009).

    Article  ADS  Google Scholar 

  17. S. G. Ovchinnikov, E. I. Shneyder, and M. M. Korshunov, J. Phys.: Condens. Matter 23, 045701 (2011).

    ADS  Google Scholar 

  18. E. I. Shneider, S. G. Ovchinnikov, M. M. Korshunov, and S. V. Nikolaev, JETP Lett. 96 (5), 349 (2012).

    Article  ADS  Google Scholar 

  19. T. Yoshida, M. Hashimoto, and S. Ideta, Phys. Rev. Lett. 103, 037004 (2009).

    Article  ADS  Google Scholar 

  20. V. A. Gavrichkov, A. A. Borisov, and S. G. Ovchinnikov, Phys. Rev. B: Condens. Matter 64, 235124 (2001).

    Article  ADS  Google Scholar 

  21. M. M. Korshunov, V. A. Gavrichkov, S. G. Ovchinnikov, I. A. Nekrasov, Z. V. Pchelkina, and V. I. Anisimov, Phys. Rev. B: Condens. Matter 72, 165104 (2005).

    Article  ADS  Google Scholar 

  22. V. A. Gavrichkov and S. G. Ovchinnikov, Phys. Solid State 50 (6), 1081 (2008).

    Article  ADS  Google Scholar 

  23. L. N. Bulaevskii, E. L. Nagaev, and D. I. Khomskii, Sov. Phys. JETP 27 (5), 836 (1968).

    ADS  Google Scholar 

  24. K. J. von Szczepanski, P. Horsch, W. Stephan, and M. Ziegler, Phys. Rev. B: Condens. Matter 41, 2017 (1990).

    Article  ADS  Google Scholar 

  25. D. Poilblanc and E. Dagotto, Phys. Rev. B: Condens. Matter 42, 4861 (1990).

    Article  ADS  Google Scholar 

  26. A. F. Barabanov, R. O. Kuzian, and L. A. Maksimov, J. Phys.: Condens. Matter 3, 9129 (1991).

    ADS  Google Scholar 

  27. R. O. Kuzian, R. Hayn, A. F. Barabanov, and L. A. Maksimov, Phys. Rev. B: Condens. Matter 58, 6194 (1998).

    Article  ADS  Google Scholar 

  28. J. P. Falck, A. Levy, M. A. Kastner, and R. J. Birgeneau, Phys. Rev. Lett. 69, 1109 (1992).

    Article  ADS  Google Scholar 

  29. M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Rev. Mod. Phys. 70, 897 (1998).

    Article  ADS  Google Scholar 

  30. H. S. Choi, Y. S. Lee, T. W. Noh, Yunkyu Bang, and Y. J. Kim, Phys. Rev. B: Condens. Matter 60, 4646 (1999).

    Article  ADS  Google Scholar 

  31. L. Hozoi, M. S. Laad, and P. Fulde, Phys. Rev. B: Condens. Matter 78, 165107 (2008).

    Article  ADS  Google Scholar 

  32. J. Meng, G. Liu, W. Zhang, L. Zhao, H. Liu, X. Jia, D. Mu, S. Liu, X. Dong, J. Zhang, W. Lu, G. Wang, Y. Zhou, Y. Zhu, and X. Wang, et al., Nature (London) 462, 335 (2009).

    Article  ADS  Google Scholar 

  33. N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Nature (London) 447, 565 (2007).

    Article  ADS  Google Scholar 

  34. E. A. Yelland, J. Singleton, C. H. Mielke, N. Harrison, F. F. Balakirev, B. Dabrowski, and J. R. Cooper, Phys. Rev. Lett. 100, 047003 (2008).

    Article  ADS  Google Scholar 

  35. A. F. Bangura, J. D. Fletcher, A. Carrington, J. Levallois, M. Nardone, B. Vignolle, P. J. Heard, N. Doiron-Leyraud, D. LeBoeuf, L. Taillefer, S. Adachi, C. Proust, and N. E. Hussey, Phys. Rev. Lett. 100, 047004 (2008).

    Article  ADS  Google Scholar 

  36. N. P. Armitage, F. Ronning, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, D. L. Feng, H. Eisaki, Z.-X. Shen, P. K. Mang, N. Kaneko, M. Greven, Y. Onose, Y. Taguchi, and Y. Tokura, Phys. Rev. Lett. 88, 257001 (2002).

    Article  ADS  Google Scholar 

  37. S. R. Park, Y. S. Roh, Y. K. Yoon, C. S. Leem, J. H. Kim, B. J. Kim, H. Koh, H. Eisaki, N. P. Armitage, and C. Kim, Phys. Rev. B: Condens. Matter 75, 060501(R) (2007).

    Article  ADS  Google Scholar 

  38. B. Valenzuela and E. Bascones, Phys. Rev. B: Condens. Matter 78, 174522 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Makarov.

Additional information

Original Russian Text © I.A. Makarov, S.G. Ovchinnikov, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 3, pp. 526–534.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, I.A., Ovchinnikov, S.G. Temperature dependence of the electronic structure of La2CuO4 in the multielectron LDA+GTB approach. J. Exp. Theor. Phys. 121, 457–464 (2015). https://doi.org/10.1134/S1063776115090174

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115090174

Keywords

Navigation