Skip to main content
Log in

On the theory of point defect recombination in crystals

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new approach to the diffusion-limited reaction kinetics for particles migrating by random walks on discrete lattice sites and reacting when two particles occupy the same site is extended to a more general case of a large reaction radius and applied to the problem of the recombination rate of point defects in cubic lattices. Numerical calculations correctly reproduce the analytic expressions in the limit cases considered in previous work and in the general case represent a stepwise dependence of the reaction rate on the recombination radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Rice, in Comprehensive Chemical Kinetics: Volume 25. Diffusion-Limited Reactions, Ed. by C. H. Bamford, C. F. H. Tipper, and R. G. Compton (Elsevier, Amsterdam, The Netherlands, 1985).

  2. J. W. Corbett, Solid State Phys., Suppl. 17, 36 (1966).

    Google Scholar 

  3. F. Collins and G. Kimball, J. Colloid Sci. 4, 425 (1949).

    Article  Google Scholar 

  4. T. R. Waite, Phys. Rev. 107, 463 (1957).

    Article  ADS  Google Scholar 

  5. M. Smoluchowski, Z. Phys. Chem. 92, 129 (1917).

    Google Scholar 

  6. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. M. S. Veshchunov, JETP 114(4), 631 (2012).

    Article  ADS  Google Scholar 

  8. M. S. Veshchunov, J. Aerosol Sci. 41, 895 (2010).

    Article  Google Scholar 

  9. I. B. Azarov and M. S. Veshchunov, J. Engineer Thermophys. (Novosibirsk) 19, 128 (2010).

    Article  Google Scholar 

  10. M. S. Veshchunov and I. B. Azarov, J. Aerosol Sci. 47, 70 (2012).

    Article  Google Scholar 

  11. M. Kac, Rocky Mt. J. Math. 4, 511 (1974).

    Article  MATH  Google Scholar 

  12. A. M. Berezhkovskii, Yu. A. Makhnovskii, and R. A. Suris, J. Stat. Phys. 57, 333 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  13. H. B. Rosenstock, Phys. Rev. 187, 1166 (1969).

    Article  ADS  Google Scholar 

  14. A. Blumen, G. Zumofen, and J. Klafter, Phys. Rev. B: Condens. Matter 30, 5379 (1984).

    Article  ADS  Google Scholar 

  15. E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  16. G. H. Vineyard, J. Math. Phys. 4, 1191 (1963).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. R. Lennartz, F. Dworschak, and H. Wollenberger, J. Phys. F: Met. Phys. 7, 2011 (1977).

    Article  ADS  Google Scholar 

  18. G. Duesing, H. Hemmerich, W. Sassin, and W. Shilling, in Proceedings of the International Conference on Vacancies and Interstitials in Metals, Juelich, Germany, September 23–28, 1968 (Juelich, 1968), Vol. 1, p. 246.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Veshchunov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarov, I.B., Veshchunov, M.S. On the theory of point defect recombination in crystals. J. Exp. Theor. Phys. 119, 473–478 (2014). https://doi.org/10.1134/S1063776114090088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114090088

Keywords

Navigation