Skip to main content
Log in

High-contrast atomic dark resonances formed in a ladder system of rubidium atoms in submicron structures

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown that high-contrast resonance of electromagnetically induced transparency (EIT) in a ladder Ξ-system of 5S 1/2-5P 3/2-5D 5/2 levels can be formed in optical cells containing a column of rubidium vapor with thickness L in an interval of 100 nm ≤ L ≤ 780 nm. Using bichromatic laser radiation with certain parameters, an 83% contrast of the EIT resonance (or dark resonance, DR) has been achieved for a vapor column thickness of L = 780 nm. An important condition for the formation of high-contrast DR is that the frequency of the coupling laser radiation must be resonant with the frequency of the corresponding 5P 3/2-5D 5/2 transition (for the probe radiation frequency scanned over the 5S 1/2-5P 3/2 transition). It is also shown that a DR can be formed at a record small vapor column thickness of L ≈ 100 nm. Expressions that can be used to estimate the expected DR width at small L values are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. Agap’ev, M. B. Gornyi, B. G. Matisov, and Yu. V. Rozhdestvenskii, Phys.—Usp. 36(9), 763 (1993).

    Article  ADS  Google Scholar 

  2. R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).

    Article  ADS  Google Scholar 

  3. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  4. A. Sargsyan, R. Mirzoyan and D. Sarkisyan, JETP Lett. 96(5), 303 (2012).

    Article  ADS  Google Scholar 

  5. J. Gea-Banacloche, Y.-Q Li, S.-Z. Jin, and Min Xiao, Phys. Rev. A 51, 576 (1995).

    Article  ADS  Google Scholar 

  6. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, Phys. Rev. Lett. 98, 113003 (2007).

    Article  ADS  Google Scholar 

  7. A. Sargsyan, M. G. Bason, D. Sarkisyan, A. K. Mohapatra, and C. S. Adams, Opt. Spectrosc. 109(4), 529 (2010).

    Article  ADS  Google Scholar 

  8. M. G. Bason, M. Tanasittikosol, A. Sargsyan, A. K. Mohapatra, D. Sarkisyan, R. M. Potvliege, and C. S. Adams, New J. Phys. 12, 065015 (2010).

    Article  ADS  Google Scholar 

  9. H. S. Moon and H.-R. Noh, Opt. Express 21, 7447 (2013).

    Article  ADS  Google Scholar 

  10. A. Sargsyan, D. Sarkisyan, U. Krohn, J. Keaveney, and Ch. Adams, Phys. Rev. A 82, 045806 (2010).

    Article  ADS  Google Scholar 

  11. S. Knappe, L. Hollberg, and J. Kitching, Opt. Lett. 29, 388 (2004).

    Article  ADS  Google Scholar 

  12. A. Sargsyan, D. Sarkisyan, and A. Papoyan, Phys. Rev. A 73, 033803 (2006).

    Article  ADS  Google Scholar 

  13. A. N. Litvinov, G. A. Kazakov, and B. G. Matisov, J. Phys. B: At., Mol. Opt. Phys. 42, 165402 (2009).

    Article  ADS  Google Scholar 

  14. A. Sargsyan and D. Sarkisyan, Opt. Spectrosc. 111(3), 334 (2011).

    Article  ADS  Google Scholar 

  15. A. Sargsyan, Y. Pashayan-Leroy, C. Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, Appl. Phys. B: Lasers Opt. 105, 767 (2011).

    Article  ADS  Google Scholar 

  16. D. Sarkisyan, D. Bloch, A. Papoyan, and M. Ducloy, Opt. Commun. 200, 201 (2001).

    Article  ADS  Google Scholar 

  17. A. Sargsyan, G. Hakhumyan, R. Mirzoyan, and D. Sarkisyan, JETP Lett. 98(8), 441 (2013).

    Article  ADS  Google Scholar 

  18. G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, Europhys. Lett. 63, 35 (2003).

    Article  ADS  Google Scholar 

  19. D. Sarkisyan, T. Varzhapetyan, A. Sarkisyan, Yu. Malakyan, A. Papoyan, A. Lezama, D. Bloch, and M. Ducloy, Phys. Rev. A 69, 065802 (2004).

    Article  ADS  Google Scholar 

  20. A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).

    Article  ADS  Google Scholar 

  21. A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, J. Exp. Theor. Phys. 115(5), 769 (2012).

    Article  ADS  Google Scholar 

  22. A. Sargsyan, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, Opt. Lett. 37, 4871 (2012).

    Article  ADS  Google Scholar 

  23. A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, Phys. Rev. A 66, 13805 (2002).

    Article  ADS  Google Scholar 

  24. C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, Phys. Rev. A 76, 013837 (2007).

    Article  ADS  Google Scholar 

  25. M. Fichet, G. Dutier, A. Yarovitsky, P. Todorov, I. Hamdi, I. Maurin, S. Saltiel, D. Sarkisyan, M.-P. Gorza, D. Bloch, and M. Ducloy, Europhys. Lett. 77, 54001 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sarkisyan.

Additional information

Original Russian Text © D. Sarkisyan, A. Sargsyan, J. Keaveney, C.S. Adams, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 1, pp. 13–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkisyan, D., Sargsyan, A., Keaveney, J. et al. High-contrast atomic dark resonances formed in a ladder system of rubidium atoms in submicron structures. J. Exp. Theor. Phys. 119, 8–14 (2014). https://doi.org/10.1134/S1063776114060181

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114060181

Keywords

Navigation