Skip to main content
Log in

Negative differential conductance in InAs wire based double quantum dot induced by a charged AFM tip

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the conductance of an InAs nanowire in the nonlinear regime in the case of low electron density where the wire is split into quantum dots connected in series. The negative differential conductance in the wire is initiated by means of a charged atomic force microscope tip adjusting the transparency of the tunneling barrier between two adjoining quantum dots. We confirm that the negative differential conductance arises due to the resonant tunneling between these two adjoining quantum dots. The influence of the transparency of the blocking barriers and the relative position of energy states in the adjoining dots on a decrease of the negative differential conductance is investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Ford, J. C. Ho, Y.-L. Chueh, Y.-C. Tseng, Z. Fan, J. Guo, J. Bokor, and A. Javey, Nano Lett. 9, 360 (2009).

    Article  ADS  Google Scholar 

  2. C. Thelander, T. Mårtensson, M. T. Björk, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, Appl. Phys. Lett. 83, 2052 (2003).

    Article  ADS  Google Scholar 

  3. M. Scheffler, S. Nadj-Perge, L. P. Kouwenhoven, M. T. Borgström, and E. P. A. M. Bakkers, J. Appl. Phys. 106, 124303 (2009).

    Article  ADS  Google Scholar 

  4. C. Blömers, M. I. Lepsa, M. Luysberg, D. Grützmacher, H. Lüth, and Th. Schäpers, Nano Lett. 11, 3550 (2011).

    Article  ADS  Google Scholar 

  5. S. Wirths, K. Weis, A. Winden, K. Sladek, C. Volk, S. Alagha, T. E. Weirich, M. von der Ahe, H. Hardtdegen, H. Lüth, N. Demarina, D. Grützmacher, and Th. Schäpers, J. Appl. Phys. 110, 053709 (2011).

    Article  ADS  Google Scholar 

  6. Th. Richter, Ch. Blömers, H. Lüth, R. Calarco, M. Indlekofer, M. Marso, and T. Schäpers, Nano Lett. 8, 2834 (2008).

    Article  ADS  Google Scholar 

  7. A. Makarovski, A. Zhukov, J. Liu, and G. Finkelstein, Phys. Rev. B: Condens. Matter 76, 161405(R) (2007).

    Article  ADS  Google Scholar 

  8. A. Makarovski, A. Zhukov, J. Liu, and G. Finkelstein, Phys. Rev. B: Condens. Matter 75, 241407(R) (2007).

    Article  ADS  Google Scholar 

  9. A. A. Zhukov, Ch. Volk, A. Winden, H. Hardtdegen, and Th. Schäpers, Physica E (Amsterdam) 44, 690 (2011).

    Article  ADS  Google Scholar 

  10. A. C. Bleszynski, F. A. Zwanenburg, R. M. Westervelt, A. L. Roest, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Nano Lett. 7, 2559 (2007).

    Article  ADS  Google Scholar 

  11. A. A. Zhukov, Ch. Volk, A. Winden, H. Hardtdegen, and Th. Schäpers, JETP Lett. 93(1), 10 (2011).

    Article  ADS  Google Scholar 

  12. R. Crook, C. G. Smith, A. C. Graham, I. Farrer, H. E. Beere, and D. A. Ritchie, Phys. Rev. Lett. 91, 246803 (2003).

    Article  ADS  Google Scholar 

  13. A. Pioda, S. Ki in, T. Ihn, M. Sigrist, A. Fuhrer, K. Ensslin, A. Weichselbaum, S. E. Ulloa, M. Reinwald, and W. Wegscheider, Phys. Rev. Lett. 93, 216801 (2004).

    Article  ADS  Google Scholar 

  14. P. Fallahi, A. C. Bleszynski, R. M. Westervelt, J. Huang, J. D. Walls, E. J. Heller, M. Hanson, and A. C. Gossard, Nano Lett. 5, 223 (2005).

    Article  ADS  Google Scholar 

  15. S. Schnez, J. Güttinger, M. Huefner, C. Stampfer, K. Ensslin, and T. Ihn, Phys. Rev. B: Condens. Matter 82, 165445 (2010).

    Article  ADS  Google Scholar 

  16. A. T. Johnson, L. P. Kouwenhoven, W. de Jong, N. C. van der Vaart, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett. 69, 1592 (1992).

    Article  ADS  Google Scholar 

  17. J. Weis, R. J. Haug, K. V. Klitzing, and K. Ploog, Phys. Rev. Lett. 71, 4019 (1993).

    Article  ADS  Google Scholar 

  18. H. Nakashima and K. Uozumi, J. Appl. Phys. Jpn. 34, L1659 (1995); H. Nakashima and K. Uozumi, J. Vac. Sci. Technol., B 15, 1411 (1997).

    Article  ADS  Google Scholar 

  19. C. P. Heij, D. C. Dixon, P. Hadley, and J. E. Mooij, Appl. Phys. Lett. 74, 1042 (1999).

    Article  ADS  Google Scholar 

  20. A. Krieg and X. L. Huang, Appl. Phys. Lett. 86, 061113 (2005).

    Article  ADS  Google Scholar 

  21. F. Capasso, S. Sen, and A. C. Gossard, IEEE Electron Device Lett. EDL-7, 573 (1986).

    Article  Google Scholar 

  22. M. Akabori, K. Sladek, H. Hardtdegen, Th. Schäpers, and D. Grützmacher, J. Cryst. Growth 311, 3813 (2009).

    Article  ADS  Google Scholar 

  23. A. A. Zhukov, Instrum. Exp. Tech. 51(1), 130 (2008).

    Article  MathSciNet  Google Scholar 

  24. K. Ishibashi, M. Suzuki, T. Ida, and Y. Aoyagi, Appl. Phys. Lett. 79, 1864 (2001).

    Article  ADS  Google Scholar 

  25. J. Fransson and O. Eriksson, Phys. Rev. B: Condens. Matter 70, 085301 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zhukov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhukov, A.A., Volk, C., Winden, A. et al. Negative differential conductance in InAs wire based double quantum dot induced by a charged AFM tip. J. Exp. Theor. Phys. 115, 1062–1067 (2012). https://doi.org/10.1134/S1063776112110131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112110131

Keywords

Navigation