Skip to main content
Log in

Graphene-based modulation-doped superlattice structures

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The electronic transport properties of graphene-based superlattice structures are investigated. A graphene-based modulation-doped superlattice structure geometry is proposed consisting of periodically arranged alternate layers: InAs/graphene/GaAs/graphene/GaSb. The undoped graphene/GaAs/graphene structure displays a relatively high conductance and enhanced mobilities at increased temperatures unlike the modulation-doped superlattice structure, which is more steady and less sensitive to temperature and the robust electrical tunable control on the screening length scale. The thermionic current density exhibits enhanced behavior due to the presence of metallic (graphene) monolayers in the superlattice structure. The proposed superlattice structure might be of great use for new types of wide-band energy gap quantum devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).

    Article  ADS  Google Scholar 

  2. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).

    Article  ADS  Google Scholar 

  3. C. Hummel, F. Schwierz, A. Hanisch, and J. Pezoldt, Phys. Status Solidi B 247, 903 (2010).

    Google Scholar 

  4. B. L. Huang and C. Y. Mou, EPL 88, 68 005 (2009).

    Article  Google Scholar 

  5. L. A. Falkovsky, Phys. Rev. B: Condens. Matter 80, 113 413 (2009); L. A. Falkovsky, Zh. Eksp. Teor. Fiz. 137 (2), 361 (2010) [JETP 110 (2), 319 (2010)].

    Article  Google Scholar 

  6. M. Topsakal, H. Sevincli, and S. Ciraci, Appl. Phys. Lett. 92, 173118 (2008).

    Article  ADS  Google Scholar 

  7. H. Sevincli, M. Topsakal, E. Durgun, and S. Ciraci, Phys. Rev. B: Condens. Matter 77, 195 434 (2008).

    Article  Google Scholar 

  8. P. Y. Chang and H. H. Lin, Appl. Phys. Lett. 95, 082104 (2009).

    Article  ADS  Google Scholar 

  9. M. K. Li, S. J. Lee, and T. W. Kang, Curr. Appl. Phys. 9, 769 (2009).

    Article  ADS  Google Scholar 

  10. M. Titov, P. M. Ostrovsky, and I. V. Gornyi, Semicond. Sci. Technol. 25, 034007 (2010).

    Article  ADS  Google Scholar 

  11. M. Titov and C. W. J. Beenakker, Phys. Rev. B: Condens. Matter 74, 041401(R) (2006).

    Article  ADS  Google Scholar 

  12. D. Bolmatov and C.-Y. Mou, Zh. Eksp. Teor. Fiz. 137(4), 695 (2010) [JETP 110 (4), 613 (2010)]; D. Bolmatov and C. Y. Mou, Physica B (Amsterdam) 405, 2896 (2010); T. Dobrowolski, Can. J. Phys. 88, 627 (2010).

    Google Scholar 

  13. D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan, W. A. de Heer, P. N. First, and J. A. Stroscio, Science (Washington) 324, 5929 (2009).

    Google Scholar 

  14. Yu. E. Lozovik, S. P. Merkulova, and I. V. Ovchinnikov, Phys. Lett. A 282, 407 (2001); Yu. E. Lozovik and A. A. Sokolik, Phys. Lett. A 374, 326 (2009).

    Article  ADS  Google Scholar 

  15. M. Litinskaya and V. M. Agranovich, J. Phys.: Condens. Matter 21, 415301 (2009).

    Google Scholar 

  16. J. Pomplun, S. Burger, F. Schmidt, A. Schliwa, D. Bimberg, A. Pietrzak, H. Wenzel, and G. Erbert, Phys. Status Solidi B 247, 846 (2010).

    Article  ADS  Google Scholar 

  17. M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, Science (Washington) 283, 1897 (1999).

    Article  ADS  Google Scholar 

  18. M. Esmailpour, A. Esmailpour, R. Asgari, M. Elahi, and M. R. R. Tabar, Solid State Commun. 150, 655 (2010).

    Article  ADS  Google Scholar 

  19. M. Mucha-Kruczynski, E. McCann, and V. I. Fal’ko, Semicond. Sci. Technol. 25, 033 001 (2010).

    Article  Google Scholar 

  20. X. Wang, Y. Ezzahri, J. Christofferson, and A. Shakouri, J. Phys. D: Appl. Phys. 42, 075 101 (2009).

    Article  Google Scholar 

  21. S. Das Sarma and D. W. Wang, Phys. Rev. Lett. 83, 816 (1999); D. W. Wang, A. J. Millis, and S. Das Sarma, Phys. Rev. Lett. 85, 4570 (2000).

    Article  ADS  Google Scholar 

  22. C. H. Shih, and C. C. Lin, Semicond. Sci. Technol. 25, 065 003 (2010).

    Article  Google Scholar 

  23. L. K. Chu, W. C. Lee, M. L. Huang, Y. H. Chang, L. T. Tung, C. C. Chang, Y. J. Lee, J. Kwo, and M. Hong, J. Crystal Growth 311, 2195 (2009).

    Article  ADS  Google Scholar 

  24. K. Trachenko and M. T. Dove, arXiv:0805.1392v1.

  25. P. Cisell, R. Zhang, Z. Wang, C. T. Reynolds, M. Baxendale, and T. Peijs, Eur. Polymer J. 45, 2741 (2009).

    Article  Google Scholar 

  26. H. Sevinli, M. Topsakal, and S. Ciraci, Phys. Rev. B: Condens. Matter 78, 245 402 (2008).

    Article  Google Scholar 

  27. N. Abedpour, A. Esmailpour, R. Asgari, and M. R. R. Tabar, Phys. Rev. B: Condens. Matter 79, 165412 (2009).

    Article  ADS  Google Scholar 

  28. L. A. Chernozatonskii and P. B. Sorokin, Phys. Status Solidi B 245, 2086 (2008); L. A. Chernozatonskii and P. B. Sorokin, J. Phys. Chem. C 114 (7), 3225 (2010).

    Article  ADS  Google Scholar 

  29. Yu-Xian Li, J. Phys.: Condens. Matter 22, 015302 (2010).

    ADS  Google Scholar 

  30. Z. P. Niu, F. X. Li, B. G. Wang, L. Sheng, and D. Y. Xing, Eur. Phys. J. B 66, 245 (2008).

    Article  ADS  Google Scholar 

  31. T. Ouyang, Y. P. Chen, K. K. Yang, and J. X. Zhong, EPL 88, 28002 (2009).

    Article  ADS  Google Scholar 

  32. A. K. M. Newaz, Y. Wang, J. Wu, S. A. Solin, V. R. Kavasseri, I. S. Ahmad, and I. Adesida, Phys. Rev. B: Condens. Matter 79, 195308 (2009).

    Article  ADS  Google Scholar 

  33. S. Saito and A. Zettl, Carbon Nanotubes: Quantum Cylinders of Graphene (Elsevier, Oxford, 2008).

    Google Scholar 

  34. B. Borca, S. Barja, M. Garnica, J. J. Hinarejos, A. L. V. Parga, R. Miranda, and F. Guinea, Semicond. Sci. Technol. 25, 034001 (2010).

    Article  ADS  Google Scholar 

  35. A. Nduwimana and Xiao-Qian Wang, Nano Lett. 9(1), 283 (2009).

    Article  ADS  Google Scholar 

  36. Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, Phys. Rev. B: Condens. Matter 79, 075123 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bolmatov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolmatov, D., Mou, CY. Graphene-based modulation-doped superlattice structures. J. Exp. Theor. Phys. 112, 102–107 (2011). https://doi.org/10.1134/S1063776111010043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111010043

Keywords

Navigation