Skip to main content
Log in

Realization of Fabry-Perot resonators for hard X rays using micro- and nanotechnology

  • Diffraction and Scattering of Ionizing Radiations
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

An X-ray Fabry-Perot resonator has been proposed and investigated for more than three decades. The difficulty in realizing such a resonator is mainly due to the strict requirement on coherence for cavity resonance, which is governed by the energy resolution of the incident X-ray photons and the size of the resonator. With the aid of modern micro-and nanotechnology for silicon, such as X-ray lithography, miniature resonators, approximately a few micrometers or smaller, can be prepared. Together with X-ray photons of ultrahigh-energy resolution from synchrotron sources, the required conditions on coherence for cavity resonance are fulfilled. Several X-ray cavities prepared by this means are used in X-ray back-diffraction experiments, where back diffraction acts as mirror reflection for X rays. Resonance interference fringes are observed unambiguously. Attempts to use multilayered materials for cavity fabrication are discussed in relation to X-ray synchrotron experiment. Possible future applications of this X-ray resonator are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice, and Applications (Hilger Press, Bristol, 1989).

    Google Scholar 

  2. W. L. Bond, M. A. Duguay, and P. M. Rentzepis, Appl. Phys. Lett. 10, 216 (1967).

    Article  Google Scholar 

  3. R. D. Deslattes, Appl. Phys. Lett. 12, 133 (1968).

    Article  Google Scholar 

  4. M. Hart, Rep. Prog. Phys. 34, 435 (1971).

    Article  ADS  Google Scholar 

  5. A. Steyerl and K.-A. Steinhauser, Z. Phys. 34, 221 (1979).

    Google Scholar 

  6. A. Caticha and S. Caticha-Ellis, Phys. Rev. B: Condens. Matter Mater. Phys. 25, 971 (1982).

    ADS  Google Scholar 

  7. A. Caticha and S. Caticha-Ellis, Phys. Status Solidi A 119, 643 (1990).

    Article  Google Scholar 

  8. S. Kikuta, Y. Imal, T. Iisuka, et al., Synchrotron. Radiat. 5, 670 (1998).

    Article  Google Scholar 

  9. V. G. Kohn, Yu. V. Shvyd’ko, and E. Gerdau, Phys. Status Solidi B 221, 597 (2000).

    Article  ADS  Google Scholar 

  10. K. D. Liss, R. Hock, M. Gomm, et al., Nature 404, 371 (2000).

    Article  ADS  Google Scholar 

  11. Yu. V. Shvyd’ko, M. Lerche, H.-C. Wille, et al., Phys. Rev. Lett. 90, 013904 (2003).

  12. Yu. V. Shvyd’ko, E. Gerdau, J. Jaeschke, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 57, 4968 (1998).

    ADS  Google Scholar 

  13. S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, et al., Phys. Rev. Lett. 94, 174801 (2005).

    Google Scholar 

  14. M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, Rev. Sci. Instrum. 72, 4080 (2001).

    Article  ADS  Google Scholar 

  15. A. Authier, Dynamical Theory of X-ray Diffraction (Oxford Univ. Press, New York, 2001).

    Google Scholar 

  16. S.-L. Chang, X-ray Multiple-Wave Diffraction: Theory and Application (Springer-Verlag, Berlin, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the 50th Anniversary of the Journal

Published in Russian in Kristallografiya, 2007, Vol. 52, No. 1, pp. 27–31.

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, S.L. Realization of Fabry-Perot resonators for hard X rays using micro- and nanotechnology. Crystallogr. Rep. 52, 23–27 (2007). https://doi.org/10.1134/S1063774507010038

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774507010038

PACS numbers

Navigation