Skip to main content
Log in

Nonlinear pulsations of stars with initial mass 3 \({M_ \odot }\) on the asymptotic giant branch

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Pulsation period changes in Mira type variables are investigated using the stellar evolution and nonlinear stellar pulsation calculations. We considered the evolutionary sequence of stellar models with initial mass \({M_{ZAMS}} = \;3{M_ \odot }\) and population I composition. Pulsations of stars in the early stage of the asymptotic giant branch are shown to be due to instability of the fundamental mode. In the later stage of evolution when the helium shell source becomes thermally unstable the stellar oscillations occur in either the fundamental mode (for the stellar luminosuty \(L < 5.4 \times {10^3}{L_ \odot }\)) or the first overtone (\(L > 7 \times {10^3}{L_ \odot }\)). Excitation of pulsations is due to the κ-mechanism in the hydrogen ionization zone. Stars with intermediate luminosities \(5.4 \times {10^3}{L_ \odot } < L < 7 \times {10^3}{L_ \odot }\) were found to be stable against radial oscillations. The pulsation period was determined as a function of evolutionary time and period change rates \(\dot \Pi \) were evaluated for the first ten helium flashes. The period change rate becomes the largest in absolute value \((\dot \Pi /\Pi \approx - {10^{ - 2}}y{r^{ - 1}})\) between the helium flash and the maximum of the stellar luminosity. Period changes with rate \(\left| {\dot \Pi /\Pi } \right| \geqslant - {10^{ - 3}}y{r^{ - 1}}\) take place during ≈500 yr, that is nearly one hundredth of the interval between helium flashes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Blöcker, Astron. Astrophys. 297, 727 (1995).

    ADS  Google Scholar 

  2. E. Böhm-Vitense, Zeitschrift für Astrophys. 46, 108 (1958).

    ADS  Google Scholar 

  3. A. I. Boothroyd and I.-J. Sackmann, Astrophys. J. 328, 632 (1988).

    Article  ADS  Google Scholar 

  4. A. S. Eddington and S. Plakidis, MNRAS 90, 65 (1929).

    Article  ADS  Google Scholar 

  5. Yu. A. Fadeyev, Pis’ma Astron. Zh. 38, 295 (2012) [Astron. Lett. 38, 260 (2012)].

    ADS  Google Scholar 

  6. Yu. A. Fadeyev, Pis’ma Astron. Zh. 39, 342 (2013) [Astron. Lett. 39, 306 (2013)].

    ADS  Google Scholar 

  7. Yu. A. Fadeyev, MNRAS 449, 1011 (2015).

  8. C. A. Haniff, M. Scholz, and P. G. Tuthill, MNRAS 276, 640 (1995).

    Article  ADS  Google Scholar 

  9. G. Hawkins, J. A. Mattei, and G. Foster, PASP 113, 501 (2001).

    Article  ADS  Google Scholar 

  10. F. Herwig, Astron. Astrophys. 360, 952 (2000).

    ADS  Google Scholar 

  11. I. Iben and A. Renzini, Annual Rev. Astron. Astrophys. 21, 271 (1983).

    Article  ADS  Google Scholar 

  12. A. W. Irwin, Astrophysics Source Code Library, record ascl:1211.002 (2012).

    Google Scholar 

  13. Y. Ita, T. Tanabé, N. Matsunaga, et al., MNRAS 347, 720 (2004).

    Article  ADS  Google Scholar 

  14. C. Koen and F. Lombard, MNRAS 353, 98 (2004).

    Article  ADS  Google Scholar 

  15. R. Kuhfuß, Astron. Astrophys. 160, 116 (1986).

    ADS  Google Scholar 

  16. T. Lebzelter and S. Andronache, IBVS 5981, 1 (2011).

    ADS  Google Scholar 

  17. T. Lebzelter and J. Hron, Astron. Astrophys. 351, 533 (1999).

    ADS  Google Scholar 

  18. I. R. Little-Marenin and S. J. Little, Astron. J. 84, 1374 (1979).

    Article  ADS  Google Scholar 

  19. D. Lorenz, T. Lebzelter, W. Nowotny, et al., Astron. Astrophys. 532, A78 (2011).

    Article  ADS  Google Scholar 

  20. P. W. Merrill, Astrophys. J. 116, 21 (1952).

    Article  ADS  Google Scholar 

  21. B. Paxton, L. Bildsten, A. Dotter, et al., Astrophys. J. Suppl. Ser. 192, 3 (2011).

    Article  ADS  Google Scholar 

  22. B. Paxton, M. Cantiello, P. Arras, et al., Astrophys. J. Suppl. Ser. 208, 4 (2013).

    Article  ADS  Google Scholar 

  23. B. Paxton, P.Marchant, J. Schwab, et al., Astrophys. J. Suppl. Ser. 220, 15 (2015).

    Article  ADS  Google Scholar 

  24. J. R. Percy and T. Colivas, Publ. Astron. Soc. Pacific 111, 94 (1999).

    Article  ADS  Google Scholar 

  25. G. Perrin, S. T. Ridgway, B. Mennesson, et al., Astron. Astrophys. 426, 279 (2004).

    Article  ADS  Google Scholar 

  26. D. Reimers, Problems in Stellar Atmospheres and Envelopes (Ed. B. Baschek, W. H. Kegel, and G. Traving, New York: Springer-Verlag, 1975), p. 229.

  27. M. Schwarzschild and R. Härm, Astrophys. J. 142, 855 (1965).

    Article  ADS  Google Scholar 

  28. K. Szatmáry, L. L. Kiss, and Zs. Bebesi, Astron. Astrophys. 398, 277 (2003).

    Article  ADS  Google Scholar 

  29. M. R. Templeton, J. A. Mattei, and L. A. Willson, Astron. J. 130, 776 (2005).

    Article  ADS  Google Scholar 

  30. Y. Tuchman, Astrophys. J. 383, 779 (1991).

    Article  ADS  Google Scholar 

  31. P. G. Tuthill, C. A. Haniff, J. E. Baldwin, and M.W. Feast, MNRAS 266, 745 (1994).

    Article  ADS  Google Scholar 

  32. S. Uttenthaler, K. van Stiphout, K. Voet, et al., Astron. Astrophys. 531, A88 (2011).

  33. E. Vassiliadis and P. R. Wood, Astrophys. J. 413, 641 (1993).

    Article  ADS  Google Scholar 

  34. A. Weigert, Zeitschrift für Astrophys. 64, 395 (1966).

    ADS  Google Scholar 

  35. J. Weiner, Astrophys. J. 611, L37 (2004).

    Article  ADS  Google Scholar 

  36. P. R. Wood and K. M. Sebo, MNRAS 282, 958 (1996).

    Article  ADS  Google Scholar 

  37. P. R. Wood and D. M. Zarro, Astrophys. J. 247, 247 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Fadeyev.

Additional information

Original Russian Text © Yu.A. Fadeyev, 2016, published in Pis’ma v Astronomicheskii Zhurnal, 2016, Vol. 42, No. 10, pp. 731–740.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadeyev, Y.A. Nonlinear pulsations of stars with initial mass 3 \({M_ \odot }\) on the asymptotic giant branch. Astron. Lett. 42, 665–673 (2016). https://doi.org/10.1134/S1063773716090024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773716090024

Keywords

Navigation