Skip to main content
Log in

Stellar content and distances to the isolated spiral galaxies NGC 6503 and NGC 6946

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Based on archival Hubble Space Telescope images, we have performed stellar photometry of several fields in the isolated spiral galaxies NGC 6503 and NGC 6946 with high peculiar velocities. Based on the TRGB method, we have determined the distances to the galaxies: D = 6.30 ± 0.10 Mpc for NGC 6503 and D = 6.72 ± 0.15 Mpc for NGC 6946. The current stellar content of the galaxies does not differ from that of other similar galaxies. The metallicity for young stars in NGC 6503 is Z = 0.02 (corresponding to the solar metallicity), while the metallicity for stars in NGC 6946 reaches Z = 0.05. Very few old globular clusters have been found in NGC 6946, while they have not been found at all in NGC 6503. The number density distribution of stars with different ages in NGC 6503 does not differ from the analogous distributions in other galaxies. The large sizes of the thick disk in NGC 6503, which is clearly seen up to 6 kpc from the galactic disk plane and whose possible extension is noticeable up to 8.6 kpc from the plane, are a difference. The sizes of the region occupied by red giants of the disk in NGC 6503 are 51 × 17 kpc, which are not much larger than the sizes of this galaxy from H I radio observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Begum and J. N. Chengalur, Astron. Astrophys. 424, 509 (2004).

    Article  ADS  Google Scholar 

  2. G. Bertelli, A. Bressan, C. Chiosi, F. Fagotto, and E. Nasi, Astron. Astrophys. 106, 275 (1994).

    ADS  Google Scholar 

  3. R. Boomsma, T. A. Oosterloo, F. Fraternali, J. M. van der Hulst, and R. Sancisi, Astron. Astrophys. 490, 555 (2008).

    Article  ADS  Google Scholar 

  4. L. Bottinelli, L. Gouguenheim, G. Paturel, and G. de Vaucouleurs, Astron.Astrophys. Suppl. Ser. 56, 381 (1984).

    ADS  Google Scholar 

  5. E. W. Greisen, K. Spekkens, and G. A. van Moorsel, Astron. J. 137, 4718 (2009).

    Article  ADS  Google Scholar 

  6. W. K. Huchtmeier, I. D. Karachentsev, and V. E. Karachentseva, Astron. Astrophys. 322, 375 (1997).

    ADS  Google Scholar 

  7. I. D. Karachentsev and M. E. Sharina, Astron. Astrophys. 324, 457 (1997).

    ADS  Google Scholar 

  8. I. D. Karachentsev, M. E. Sharina, and W. K. Huchtmeier, Astron. Astrophys. 362, 544 (2000).

    ADS  Google Scholar 

  9. I. D. Karachentsev, D. I. Makarov, M. E. Sharina, A. E. Dolphin, E. K. Grebel, D. Geisler, P. Guhathakurta, P. W. Hodge, V. E. Karachentseva, A. Sarajedini, and P. Seitzer, Astron. Astrophys. 398, 479 (2003).

    Article  ADS  Google Scholar 

  10. M. G. Lee, W. L. Freedman, and B. F. Madore, Astrophys. J. 417, 553 (1993).

    Article  ADS  Google Scholar 

  11. B. Madore and W. Fridman, Astron. J. 109, 1645 (1995).

    Article  ADS  Google Scholar 

  12. E. F. Olivares, M. Hamuy, G. Pignata et al., Astrophys. J. 715, 833 (2010).

    Article  ADS  Google Scholar 

  13. M. J. Pierce, Astrophys. J. 430, 53 (1994).

    Article  ADS  Google Scholar 

  14. D. J. Pisano and E. M. Wilcots, Mon. Not. R. Astron. Soc. 319, 821 (2000).

    Article  ADS  Google Scholar 

  15. D. Poznanski, N. Butler, A. Filippenko, M. Ganeshalingam, W. Li, J. S. Bloom, R. Chornock, R. J. Foley, et al., Astrophys. J. 694, 1067 (2009).

    Article  ADS  Google Scholar 

  16. E. F. Schlafly and D. P. Finkbeiner, Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  17. D. J. Schlegel, D. P. Finkbeiner, and M. Davis, Astrophys. J. 500, 525 (1998).

    Article  ADS  Google Scholar 

  18. B. P. Schmidt, R. P. Kirshner, and R. C. Eastman, Astrophys. J. 395, 366 (1992).

    Article  ADS  Google Scholar 

  19. B. P. Schmidt, R. P. Kirshner, R. C. Eastman, M. M. Phillips, N. B. Suntzeff, M. Hamuy, J. Maza, and R. Aviles, Astrophys. J. 432, 42 (1994).

    Article  ADS  Google Scholar 

  20. M. E. Sharina, I. D. Karatchentsev, and N. A. Tikhonov, Astron. Lett. 23, 373 (1997).

    ADS  Google Scholar 

  21. P. Stetson, Publ. Astron. Soc. Pacif. 106, 250 (1994).

    Article  ADS  Google Scholar 

  22. P. Stetson, Publ. Astron. Soc. Pacif. 99, 191 (1987).

    Article  ADS  Google Scholar 

  23. K. Takats and J. Vinko, Mon. Not. R. Astron. Soc. 419, 2783 (2012).

    Article  ADS  Google Scholar 

  24. N. A. Tikhonov and O. A. Galazutdinova, Astron. Lett. 38, 147 (2012).

    Article  ADS  Google Scholar 

  25. N. A. Tikhonov, Astron. Lett. 38, 497 (2012).

    Article  ADS  Google Scholar 

  26. K. W. Weiler, S. D. van Dyk, M. J. Montes, N. Panagia, and R. A. Sramek, Astrophys. J. 500, 51 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Tikhonov.

Additional information

Original Russian Text © N.A. Tikhonov, 2014, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2014, Vol. 40, No. 9, pp. 596–610.

Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc. under contract No. NAS5-26555. These observations are associated with proposals 9293, 9788, 12331, 12450, 12546, 13364.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, N.A. Stellar content and distances to the isolated spiral galaxies NGC 6503 and NGC 6946. Astron. Lett. 40, 537–550 (2014). https://doi.org/10.1134/S1063773714090035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773714090035

Keywords

Navigation