Skip to main content
Log in

The spin-down mechanism of the X-ray pulsar 4U 2206+54

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Observations of the X-ray pulsar 4U 2206+54 obtrained over 15 years show that its period, which is now 5555 ± 9 s, is increasing dramatically. This behavior is difficult to explain using traditional scenarios for the spin evolution of compact stars. The observed spin-down rate of the neutron star in 4U 2206+54 is in good agreement with the value expected in a magnetic-accretion scenario, taking into account that, under certain conditions, the magnetic field of the accretion stream can affect the geometry and type of flow. The neutron star in this case accretes material from a dense gaseous slab with small angular momentum, which is kept in equilibrium by the magnetic field of the flow itself. A magnetic-accretion scenario can be realized in 4U 2206+54 if the magnetic-field strength at the surface of the optical counterpart to the neutron star is higher than 70 G. The magnetic field at the surface of the neutron star is 4 × 1012 G in this scenario, in agreement with estimates based on an analysis of X-ray spectra of the pulsar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Giacconi, S. Murray, H. Gursky, et al., Astrophys. J. 178, 281 (1972).

    Article  ADS  Google Scholar 

  2. P. Blay, I. Negueruela, P. Rieg, et al., Astron. Astrophys. 446, 1095 (2006).

    Article  ADS  Google Scholar 

  3. R. H. D. Corbet, C. B. Markwardt, and J. Tueller, Astrophys. J. 655, 458 (2007).

    Article  ADS  Google Scholar 

  4. M. Ribó, I. Negueruela, P. Blay, et al., Astron. Astrophys. 449, 687 (2006).

    Article  ADS  Google Scholar 

  5. P. Blay and V. Reglero, Bull. Soc. R. Sci. Liége 80, 634 (2011).

    ADS  Google Scholar 

  6. P. Rieg, J. M. Torrejón, I. Negueruela, et al., Astron. Astrophys. 494, 1073 (2009).

    Article  ADS  Google Scholar 

  7. M. H. Finger, N. R. Ikhsanov, C. A. Wilson-Hodge, and S. K. Patel, Astrophys. J. 709, 1249 (2010).

    Article  ADS  Google Scholar 

  8. W. Wang, Astron. Astrophys. 520, 22 (2010).

    Article  ADS  Google Scholar 

  9. A. G. Masevich and A. V. Tutukov, Stellar Evolution: Theory and Observations (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  10. N. R. Ikhsanov and N. G. Beskrovnaya, Astrofizika 53, 269 (2010).

    Google Scholar 

  11. J.M. Torrejón, I. Kreykenbohm, A. Orr, et al., Astron. Astrophys. 423, 301 (2004).

    Article  ADS  Google Scholar 

  12. N. R. Ikhsanov, Mon. Not. R. Astron. Soc. 375, 698 (2007).

    Article  ADS  Google Scholar 

  13. M. Colpi, U. Geppert, and D. Page, Astrophys. J. Lett. 529, L29 (2000).

    Article  ADS  Google Scholar 

  14. A. Bonanno, V. Urpin, and G. Belvedere, Astron. Astrophys. 451, 1049 (2006).

    Article  ADS  Google Scholar 

  15. V. M. Lipunov, Astrophys. Space Sci. 85, 451 (1982).

    Article  ADS  Google Scholar 

  16. V. Doroshenko, A. Santangelo, V. Suleimanov, et al., Astron. Astrophys. 515, 10 (2010).

    Article  ADS  Google Scholar 

  17. N. R. Ikhsanov, L. A. Pustil’nik, and N. G. Beskrovnaya, in Waves and Instabilities in Space and Astrophysical Plasmas, Ed. by P.-L. Sulem and M. Mond, AIP Conf. Proc. 1439, 237 (2012).

    ADS  Google Scholar 

  18. N. R. Ikhsanov and N. G. Beskrovnaya, Sov. Astron. 56, 589 (2012).

    Google Scholar 

  19. V. F. Shvartsman, Sov. Astron. 15, 377 (1971).

    ADS  Google Scholar 

  20. G. S. Bisnovatyi-Kogan and A. A. Ruzmaikin, Astrophys. Space Sci. 28, 45 (1974).

    Article  ADS  Google Scholar 

  21. G. S. Bisnovatyi-Kogan and A. A. Ruzmaikin, Astrophys. Space Sci. 42, 401 (1976).

    Article  ADS  Google Scholar 

  22. H. Bondi and F. Hoyle, Mon. Not. R. Astron. Soc. 104, 273 (1944).

    ADS  Google Scholar 

  23. H. Bondi, Mon. Not. R. Astron. Soc. 112, 195 (1952).

    MathSciNet  ADS  Google Scholar 

  24. J. Arons and S. M. Lea, Astrophys. J. 207, 914 (1976).

    Article  ADS  Google Scholar 

  25. R. F. Elsner and F. K. Lamb, Astrophys. J. 215, 897 (1977).

    Article  ADS  Google Scholar 

  26. A. F. Illarionov and R. A. Sunyaev, Astron. Astrophys. 39, 185 (1975).

    ADS  Google Scholar 

  27. M. Ruffert, Astron. Astrophys. 346, 861 (1999).

    ADS  Google Scholar 

  28. Ya. B. Zel’dovich and N. I. Shakura, Sov. Astron. 13, 175 (1969).

    ADS  Google Scholar 

  29. G. S. Bisnovatyi-Kogan and A. M. Fridman, Sov. Astron. 13, 566 (1969).

    ADS  Google Scholar 

  30. B. B. Kadomtsev, Usp. Fiz. Nauk 151, 3 (1987).

    Article  Google Scholar 

  31. I. V. Igumenshchev, R. Narayan, and M. A. Abramowicz, Astrophys. J. 592, 1042 (2003).

    Article  ADS  Google Scholar 

  32. I. V. Igumenshchev, Astrophys. J. 649, 361 (2006).

    Article  ADS  Google Scholar 

  33. G. S. Bisnovatyi-Kogan, Astron. Astrophys. 245, 528 (1991).

    ADS  Google Scholar 

  34. R. E. Davies and J. E. Pringle, Mon. Not. R. Astron. Soc. 196, 209 (1981).

    ADS  Google Scholar 

  35. L. Mestel, Mon. Not. R. Astron. Soc. 119, 223 (1959).

    MathSciNet  ADS  Google Scholar 

  36. L. S. Sparke, Astrophys. J. 260, 104 (1982).

    Article  ADS  Google Scholar 

  37. R. F. Elsner and F. K. Lamb, Astrophys. J. 278, 326 (1984).

    Article  ADS  Google Scholar 

  38. J. T. Gosling, M. F. Thomsen, S. J. Bame, et al., J. Geophys. Res. 96, 14097 (1991).

    Article  ADS  Google Scholar 

  39. G. Paschmann, Geophys. Res. Lett. 35, L19109 (2008).

    Article  ADS  Google Scholar 

  40. F. Martins, J.-F. Donati, W. L. F. Marcolino, et al., Mon. Not. R. Astron. Soc. 407, 1423 (2010).

    Article  ADS  Google Scholar 

  41. S. Hubrig, M. Schöller, N. V. Kravchenko, et al., Astron. Astrophys. 582, 151 (2011).

    Article  Google Scholar 

  42. R. Walder, D. Folini, and G. Meynet, Space Sci. Rev. 166, 145 (2012); e-Print arXiv:1103.3777 [astro-ph] (2012).

    Article  ADS  Google Scholar 

  43. R. V. E. Lovelace, M. M. Romanova, and G. S. Bisnovatyi-Kogan, Mon. Not. R. Astron. Soc. 275, 244 (1995).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Ikhsanov.

Additional information

Original Russian Text © N.R. Ikhsanov, N.G. Beskrovnaya, 2013, published in Astronomicheskii Zhurnal, 2013, Vol. 90, No. 4, pp. 322–329.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikhsanov, N.R., Beskrovnaya, N.G. The spin-down mechanism of the X-ray pulsar 4U 2206+54. Astron. Rep. 57, 287–293 (2013). https://doi.org/10.1134/S1063772913030013

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772913030013

Keywords

Navigation