Skip to main content
Log in

Class I methanol masers in low-mass star-forming regions

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Results of observations of Class I methanol masers in regions of low-mass star formation (MMIL) are summarized and analyzed. Four masers were detected at 44, 84, and 95 GHz towards “chemically active” bipolar outflows in the low-mass star-forming regions NGC1333 I4A, NGC 1333 I2A, HH 25, and L1157. Another maser was found at 36 GHz towards a similar outflow in NGC 2023. Thus, all the detected MMILs are associated with chemically active outflows. The brightness temperatures of the strongest 44-GHz maser spots in NGC 1333 I4A, HH 25, and L1157 exceed 2000 K, whereas the brightness temperature in NGC 1333 I2A is only 176 K, although a rotational-diagram analysis shows that this last source is also amaser. The flux densities of the newly detectedmasers are no higher than 18 Jy, and are much lower than those of strong masers in regions of high-mass star formation (MMIH). The MMIL luminosities match the maser luminosity-protostar luminosity relation established earlier for MMIHs. No MMIL variability was detected in 2004–2011. The radial velocities of the newly detected masers are close to the systemic velocities of the associated regions, except for NGC 2023, where the maser radial velocity is lower than the systemic velocity by approximately 3.5 km/s. Thus, the main MMILproperties are similar to those of MMIHs. MMILs are likely to be an extension of the MMIH population toward lower luminosities of both the masers and the associated young stellar objects. The results of VLA observations of MMILs can be explained using a turbulent-cloud model, which predicts that compact maser spots can arise in extended sources because the coherence lengths along some directions randomly appear to be longer than the mean coherence length in a turbulent velocity field. However, one must assume that the column density of methanol towardM1, the strongest maser in L1157, is appreciably higher than the mean column density of the clump B0a where the maser arises. The shape of the maser lines in L1157, forming double profiles with a red asymmetry, may indicate that the masers arise in collapsing clumps. However, although this model may be correct for L1157, it is specific to this source, since none of the other masers observed exhibited a double profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Plambeck and K.M. Menten, Astrophys. J. 364, 555 (1990).

    Article  ADS  Google Scholar 

  2. K. M. Menten, in Skylines, Proceedings of the 3rd Haystack Observatory Meeting, Ed. by A. D. Haschick and P. T. P. Ho, ASP Conf. Ser. 16, 119 (1991).

  3. M. A. Voronkov, J. L. Caswell, S. P. Ellingsen, et al., in Cosmic Masers-from OH to H 0, Ed. by R.S. Booth, E.M.L. Humphreys, and W. T. H. Vlemmings (Cambridge Univ. Press, 2012), p. 433; arXiv:1203.5492v1 [astro-ph] (2012).

  4. A. M. Sobolev, Lect. Notes Phys. 412, 219 (1993).

    Article  ADS  Google Scholar 

  5. S. Kurtz, P. Hofner, and C. V. Alvarez, Astrophys. J. Suppl. Ser. 155, 149 (2004).

    Article  ADS  Google Scholar 

  6. M. A. Voronkov, J. L. Caswell, S. P. Ellingsen, and A. M. Sobolev, Mon. Not. R. Astron. Soc. 405, 2471 (2010).

    ADS  Google Scholar 

  7. S. Yu. Zubrin and V. M. Shulga, in YSC’15 Proceedings of Contributed Papers, Ed. by V. Ya. Choliy and G. Ivashchenko (Kiev State Univ., Kiev, 2008), p. 41.

    Google Scholar 

  8. I. D. Litovchenko, A. V. Alakoz, I. E. Val’tts, and G. M. Larionov, Astron. Rep. 55, 978 (2011).

    Article  ADS  Google Scholar 

  9. R. Bachiller, M. PérezGutiérrez, M. S.N. Kumar, and M. Tafalla, Astron. Astrophys. 372, 899 (2001).

    Article  ADS  Google Scholar 

  10. S. V. Kalenskii, V. G. Promyslov, V. I. Slysh, et al., Astron. Rep. 50, 289 (2006).

    Article  ADS  Google Scholar 

  11. S.V. Kalenskii, L. E. B. Johansson, P. Bergman, et al., Mon. Not. R. Astron. Soc. 405, 613 (2010).

    ADS  Google Scholar 

  12. S. V. Kalenskii, S. Kurtts, V. I. Slysh, et al., Astron. Rep. 54, 932 (2010).

    Article  ADS  Google Scholar 

  13. R. Bachiller, C. Codella, F. Colomer, et al., Astron. Astrophys. 335, 266 (1998).

    ADS  Google Scholar 

  14. J. Di Francesco, P. C. Myers, D. J. Wilner, et al., Astrophys. J. 562, 770 (2001).

    Article  ADS  Google Scholar 

  15. A. Gibb and C. J. Davis, Mon. Not. R. Astron. Soc. 298, 644 (1998).

    Article  ADS  Google Scholar 

  16. P. Pratap, P. A. Shute, T. C. Keane, et al., Astron. J. 135, 1718 (2008).

    Article  ADS  Google Scholar 

  17. M. A. Voronkov, J. L. Caswell, T. R. Britton, et al., Mon. Not. R. Astron. Soc. 408, 133 (2010).

    Article  ADS  Google Scholar 

  18. G. Sandell, L. W. Avery, F. Baas, et al., Astrophys. J. 519, 236 (1999).

    Article  ADS  Google Scholar 

  19. V. I. Slysh, S. V. Kalenskii, I. E. Val’tts, et al., Astrophys. J. Suppl. Ser. 123, 515 (1999).

    Article  ADS  Google Scholar 

  20. S. V. Kalenskii, V. I. Slysh, and I. E. Val’tts, Astron. Rep. 46, 96 (2002).

    Article  ADS  Google Scholar 

  21. S. V. Kalenskii, V. G. Promyslov, and A. Winnberg, Astron. Rep. 51, 44 (2007).

    Article  ADS  Google Scholar 

  22. M. Benedettini, S. Viti, C. Codella, et al., Mon. Not. R. Astron. Soc. 381, 1127 (2007).

    Article  ADS  Google Scholar 

  23. S. Viti, C. Codella, M. Benedettini, and R. Bachiller, Mon. Not. R. Astron. Soc. 350, 1029 (2004).

    Article  ADS  Google Scholar 

  24. M. Choi, Astrophys. J. 630, 976 (2005).

    Article  ADS  Google Scholar 

  25. A. Haschick, K.M. Menten, and W. Baan, Astrophys. J. 354, 556 (1990).

    Article  ADS  Google Scholar 

  26. J.-H. Bae, K.-T. Kim, S.-Y. Youn, et al., Astrophys. J. Suppl. Ser. 196, 21 (2001).

    Article  ADS  Google Scholar 

  27. S. V. Polushkin, I. E. Val’tts, and V. I. Slysh, Astron. Rep. 53, 113 (2009).

    Article  ADS  Google Scholar 

  28. A. M. Sobolev, B. K. Wallin, and W. D. Watson, Astrophys. J. 498, 763 (1998).

    Article  ADS  Google Scholar 

  29. C. F. McKee and E. C. Ostriker, Ann. Rev. Astron. Astrophys. 45, 565 (2007)

    Article  ADS  Google Scholar 

  30. F. Gueth, S. Guilloteau, and R. Bachiller, Astron. Astrophys. 333, 287 (1998).

    ADS  Google Scholar 

  31. L. W. Looney, J. J. Tobin, and W. Kwon, Astrophys. J. Lett. 670, L131 (2007).

    Article  ADS  Google Scholar 

  32. A. Rosen and M. D. Smith, Astron. Astrophys. 413, 593 (2004).

    Article  ADS  Google Scholar 

  33. S. Zhou, in Molecules in Astrophysics: Probes and Processes, Ed. by E. F. van Dishoeck, p. 193 (1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kalenskii.

Additional information

Original Russian Text © S.V. Kalenskii, S. Kurtz, P. Bergman, 2013, published in Astronomicheskii Zhurnal, 2013, Vol. 90, No. 2, pp. 143–151.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalenskii, S.V., Kurtz, S. & Bergman, P. Class I methanol masers in low-mass star-forming regions. Astron. Rep. 57, 120–127 (2013). https://doi.org/10.1134/S1063772913020066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772913020066

Keywords

Navigation