Skip to main content
Log in

Expression of thrombospondin-1 and CD36 and CD47 receptors in the rat brain after exposure to damaging factors in the early postnatal period

  • Animal and Human Physiology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The expression of thrombospondin-1 (TS-1) and its receptors CD47 and CD36 in the cerebral cortex and hippocampus of rats under damaging factors in the early postnatal period was studied. After hypoxia on the 7th day of postnatal development, an increase in the number of CD47-expressing cerebral endothelial cells (days of postnatal development: P28–P70) and reduction in the number of TS-1-expressing astrocytes in the cortex at P28 were observed. In animals subjected to early postnatal stress at the age of P2–P15, a decrease in TS-1-expressing astrocytes in the cortex and hippocampus was registered (predominantly at the age of P28). It was noted that these changes characterize the period of long-term effects (P28–P70) of early stress that is relevant to the processes of reparative angiogenesis and arresting of neurological deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boldrini, M., Hen, R., Underwood, M.D., Rosoklija, G.B., Dwork, A.J., Mann, J.J., and Arango, V, Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression, Biol. Psychiatry, 2012, vol. 72, no. 7, pp. 562–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buee, L., Hof, P.R., Roberts, D.D., Delacourte, A., Morrison, J.H., and Fillit, H.M, Immunohistochemical identification of thrombospondin in normal human brain and in Alzheimer’s disease, Am. J. Pathol., 1992, vol. 141, no. 4, pp. 783–788.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno, D., Parvas, M., Hermelo, I., and Garcia-Fernandez, J, Embryonic blood-cerebrospinal fluid barrier formation and function, Front. Neurosci., 2014, vol. 8, pp. 1–12.

    Article  Google Scholar 

  • Chen, Z.S., Pohl, J., Lawley, T.J., and Swerlick, R.A, Human microvascular endothelial cells adhere to thrombospondin-1 via an RGD/CSVTCG domain independent mechanism, J. Invest. Dermatol., 1996, vol. 106, no. 2, pp. 215–220.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Li, Y., Wang, L., Lu, M., Zhang, X., and Chopp, M, Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats, J. Neurol. Sci., 2001, vol. 189, nos. 1–2, pp. 49–57.

    Article  CAS  PubMed  Google Scholar 

  • Cioni, G., D’Acunto, G., and Guzzetta, A, Perinatal brain damage in children: neuroplasticity, early intervention, and molecular mechanisms of recovery, Prog. Brain Res., 2011, vol. 189, pp. 139–154.

    Google Scholar 

  • Dickey, E.J., Long, S.N., and Hunt, R.W, Hypoxic ischemic encephalopathy - what can we learn from humans?, J. Vet. Intern. Med., 2011, vol. 25, no. 6, pp. 1231–1240.

    Article  CAS  PubMed  Google Scholar 

  • Ek, C.J., Dziegielewska, K.M., Habgood, M.D., and Saunders, N.R, Barriers in the developing brain and neurotoxicology, Neurotoxicology, 2012, vol. 33, no. 3, pp. 586–604.

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Gonzalez, B. and Escobar, A, Altered functional development of the blood-brain barrier after early life stress in the rat, Brain Res. Bull., 2009, vol. 79, no. 6, pp. 376–387.

    Article  CAS  PubMed  Google Scholar 

  • Han, M.H., Lundgren, D.H., Jaiswal, S., Chao, M., Graham, K.L., Garris, C.S., Axtell, R.C., Ho, P.P., Lock, C.B., Woodard, J.I., Brownell, S.E., Zoudilova, M., Hunt, J.F., Baranzini, S.E., Butcher, E.C., Raine, C.S., Sobel, R.A., Han, D.K., Weissman, I., and Steinman, L., Janus-like opposing roles of CD47 in autoimmune brain inflammation in humans and mice, J. Exp. Med., 2012, vol. 209, no. 7, pp. 1325–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison, E.L. and Baune, B.T, Modulation of early stressinduced neurobiological changes: a review of behavioural and pharmacological interventions in animal models, Transl. Psychiatry, 2014, vol. 4, pp. 1–18.

    Article  Google Scholar 

  • Kastner, A., Anglade, P., Bounaix, C., Damier, P., Javoy-Agid, F., Bromet, N., Agid, Y., and Hirsch, E.C, Immunohistochemical study of catechol-O-methyltransferase in the human mesostriatal system, Neuroscience, 1994, vol. 62, no. 2, pp. 449–457.

    Article  CAS  PubMed  Google Scholar 

  • Kerr, A.L., Steuer, E.L., Pochtarev, V., and Swain, R.A, Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition, Neuroscience, 2010, vol. 171, no. 1, pp. 214–226.

    Article  CAS  PubMed  Google Scholar 

  • Klenotic, P.A., Page, R.C., Li, W., Amick, J., Misra, S., and Silverstein, R.L, Molecular basis of antiangiogenic thrombospondin-1 type 1 repeat domain interactions with CD36, Arterioscler. Thromb. Vasc. Biol., 2013, vol. 33, no. 7, pp. 1655–1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawler, P.R. and Lawler, J, Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2, Cold Spring Harb. Perspect. Med., 2012, vol. 2, no. 5, pp. 1–13.

    Article  Google Scholar 

  • Lee, P.R., Brady, D.L., Shapiro, R.A., Dorsa, D.M., and Koenig, J.I, Prenatal stress generates deficits in rat social behavior: reversal by oxytocin, Brain Res., 2007, vol. 1156, pp. 152–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Dee, Z., Pidcock, K., and Gutierrez, L.S., Thrombospondin-1: multiple paths to inflammation, Mediators Inflamm., 2011, vol. 2011, pp. 1–10.

    Article  Google Scholar 

  • Marmendal, M., Roman, E., Eriksson, C.J., Nylander, I., and Fahlke, C, Maternal separation alters maternal care, but has minor effects on behavior and brain opioid peptides in adult offspring, Dev. Psychobiol., 2004, vol. 45, no. 3, pp. 140–152.

    CAS  PubMed  Google Scholar 

  • Northington, F.J., Graham, E.M., and Martin, L.G, Apoptosis in perinatal hypoxic-ischemic brain injury: how important is it and should be inhibited?, Brain Res. Rev., 2005, vol. 50, no. 2, pp. 244–257.

    Article  CAS  PubMed  Google Scholar 

  • Nylander, I. and Roman, E, Neuropeptides as mediators of the early-life impact on the brain; implications for alcohol use disorders, Front. Mol. Neurosci., 2012, vol. 5, pp. 1–19.

    Article  Google Scholar 

  • Osz, K., Ross, M., and Petrik, J, The thrombospondin-1 receptor CD36 is an important mediator of ovarian angiogenesis and folliculogenesis, Reprod. Biol. Endocrinol., 2014, vol. 12, p. 21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prusakov, V.F., Morozova, E.A., Belousova, M.V., Utkuzova, M.A., Zaikova, F.M., Marulina, V.I., Gamirova, R.G., and Morozov, D.V, Current problems of perinatal neurology, Prakt. Meditsina, 2012, no. 2 (57), pp. 57–60.

    Google Scholar 

  • Qian, X., Wang, T.N., Rothman, V.L., Nicosia, R.F., and Tuszynski, G.P., Thrombospondin-1 modulates angiogenesis in vitro by up-regulation of matrix metalloproteinase-9 in endothelial cells, Exp. Cell Res., 1997, vol. 235, no. 2, pp. 403–412.

    Article  CAS  PubMed  Google Scholar 

  • Salmina, A.B., Shnaider, N.A., Mikhutkina, S.V., Fursov, A.A., Malinovskaya, N.A., and Trufanova, L.V, Changes in the activity of ADP-ribosyl cyclase in nervous system cells correlates with the development of postischemic cognitive dysfunction, Mezhdunar. Nevrol. Zh., 2007, no. 1 (11), pp. 71–78.

    Google Scholar 

  • Shakina, L.D. and Smirnov, I.E, Biomarkers of perinatal hypoxia, Mol. Meditsina, 2010, no. 3, pp. 19–28.

    Google Scholar 

  • Siegenthaler, J.A., Sohet, F., and Daneman, R., “Sealing off the CNS”: cellular and molecular regulation of bloodbrain barrier genesis, Curr. Opin. Neurobiol., 2013, vol. 23, no. 6, pp. 1057–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suarez, I., Bodega, G., Rubio, M., Garcia-Segura, L.M., and Fernandez, B, Astroglial induction of in vivo angiogenesis, J. Neural. Transplant. Plast., 1994, vol. 5, no. 1, pp. 1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, A.G., Dennis, A., Bandettini, P.A., and Johansen-Berg, H, The effects of aerobic activity on brain structure, Front. Psychol., 2012, vol. 3, p. 86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian, W., Sawyer, A., Kocaoglu, F.B., and Kyriakides, T.R., Astrocyte-derived thrombospondin-2 is critical for the repair of the blood-brain barrier, Am. J. Pathol., 2011, vol. 179, no. 2, pp. 860–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosun, C., Hong, C., Carusillo, B., Ivanova, S., Gerzanich, V., and Simard, J.M, Angiogenesis induced by prenatal ischemia predisposes to periventricular hemorrhage during postnatal mechanical ventilation, Pediatr. Res., 2015, vol. 77, no. 5, pp. 663–673.

    PubMed  PubMed Central  Google Scholar 

  • Uhelski, M.L. and Fuchs, P.N, Maternal separation stress leads to enhanced emotional responses to noxious stimuli in adult rats, Behav. Brain Res., 2010, vol. 212, no. 2, pp. 208–212.

    Article  PubMed  Google Scholar 

  • Vannucci, R.C., Connor, J.R., Mauger, D.T., Palmer, C., Smith, M.B., Towfighi, J., and Vannucci, S.J, Rat model of perinatal hypoxic-ischemic brain damage, J. Neurosci. Res., 1999, vol. 55, no. 2, pp. 158–163.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, C.S., Withers, G.S., Farnand, A., Lobingier, B.T., and McCleery, E.J, Evidence that angiogenesis lags behind neuron and astrocyte growth in experience-dependent plasticity, Dev. Psychobiol., 2011, vol. 53, no. 5, pp. 435–442.

    Article  PubMed  Google Scholar 

  • Yauzina, N.A., Cherepanov, S.M., Komleva, Yu.K., Khilazheva, E.D., Frolova, O.V., Laletin, D.I., Govorina, Yu.B., Zamai, A.S., Rondova, K.V., Kuvacheva, N.V., Morgun, A.V., Petrova, M.M., and Salmina, A.B, Influence of early life stress on behavior, neurogenesis, and apoptosis of brain cells in rats, Sib. Med. Obozr., 2013, no. 5, pp. 22–26.

    Google Scholar 

  • Zakharova, L.A, Perinatal stress in brain programming and pathogenesis of psychoneurological disorders, Biol. Bull. (Moscow), 2015, vol. 42, no. 1, pp. 12–21.

    Article  CAS  Google Scholar 

  • Zhang, Q., Ding, Y., Yao, Y., Yu, Y., Yang, L., and Cui, H, Creating rat model for hypoxic brain damage in neonates by oxygen deprivation, PLoS One, 2013, vol. 8, no. 12, pp. 1–14.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Malinovskaya.

Additional information

Original Russian Text © N.A. Malinovskaya, N.V. Pisareva, A.V. Morgun, A.B. Salmina, Yu.A. Panina, E.L. Zhukov, N.N. Medvedeva, 2017, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2017, No. 3, pp. 295–303.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinovskaya, N.A., Pisareva, N.V., Morgun, A.V. et al. Expression of thrombospondin-1 and CD36 and CD47 receptors in the rat brain after exposure to damaging factors in the early postnatal period. Biol Bull Russ Acad Sci 44, 307–314 (2017). https://doi.org/10.1134/S1062359017020133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359017020133

Navigation