Skip to main content
Log in

Aggregation and complexation in a series of tetramethylenesulfonate-substituted calix[4]resorcinarenes

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

NMR methods are employed to study the effects of inorganic salts, solvents, and guest molecules of methylviologen (MV2+) and choline (Ch+) on the aggregation properties of water-soluble tetramethylene-sulfonate-substituted calix[4]resorcinarenes containing methyl (1), amyl (2), and heptyl (3) substituents in the lower rim. It is established that, in aqueous solutions at concentrations of 1–10 mM, compound 1 exists in the monomeric form; the size of aggregates of amphiphilic compound 2 gradually increases (aggregation number varies from 1 to 20); and hydrophobic compound 3 dissolves only in slightly alkaline aqueous solutions to form large micellar aggregates. For macrocycles 2 and 3, which are inclined to aggregation, the aggregate sizes depend on the concentration, pH, and ionic strength of solutions, as well as on the presence of organic solvents. Macrocycle 1 binds guest molecules Ch+ and MV2+ to yield inclusion complexes. In the presence of aggregates of substance 2, the binding of guest molecules is more efficient and they are encapsulated between the rim of one molecule and the tail of another molecule of compound 2. The presence of guest molecules enhances the aggregation of macrocycle 2. In the case of compound 3 solutions, guest Ch+ molecules are predominantly localized in the hydrophobic environment of alkyl substituents of the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhushan, B., Springer Handbook of Nanotechnology, New York: Springer, 2004.

    Book  Google Scholar 

  2. Yushkova, E. and Stoikov, I., Langmuir, 2009, vol. 25, p. 4919.

    Article  CAS  Google Scholar 

  3. Guan, B., Jiang, M., Yang, X., and Lianga, Q., Chem. Soft Matter, 2008, vol. 4, p. 1393.

    Article  CAS  Google Scholar 

  4. Cai, W., Wang, G.-T., Xu, Y.-X., et al., J. Am. Chem. Soc., 2008, vol. 130, p. 6936.

    Article  CAS  Google Scholar 

  5. Liu, Y., Ke, Ch.-F., Zhang, H.-Y., Cui, J., and Ding, F., J. Am. Chem. Soc., 2008, vol. 130, p. 600.

    Article  CAS  Google Scholar 

  6. Jain, R., Ernst, J.T., Kutzki, O., et al., Mol. Diversity, 2004, vol. 8, p. 89.

    Article  CAS  Google Scholar 

  7. Shahgaldian, P., Sciotti, M.A., and Pieles, U., Langmuir, 2008, vol. 24, p. 8522.

    Article  CAS  Google Scholar 

  8. Guo, D.-Sh., Wang, K., and Liu, Y., J. Inclusion Phenom. Macrocycl. Chem., 2008, vol. 62, p. 1.

    Article  CAS  Google Scholar 

  9. Kobayashi, K., Asakawa, Y., Kato, Y., and Aoyama, Y., J. Am. Chem. Soc., 1992, vol. 114, p. 10307.

    Article  CAS  Google Scholar 

  10. Yanagihara, R., Tominaga, M., and Aoyama, Y., Org. Chem., 1994, vol. 59, p. 6865.

    Article  CAS  Google Scholar 

  11. Fujimoto, T., Yanagihara, R., Kobayashi, K., and Aoyama, Y., Bull. Chem. Soc. Jpn., 1995, vol. 68, p. 2113.

    Article  CAS  Google Scholar 

  12. Credi, A., Dumas, S., Silvi, S., et al., Org. Chem., 2004, vol. 69, p. 5881.

    Article  CAS  Google Scholar 

  13. Leverd, P.C., Berthault, P., Zance, M., and Nierlich, M., Eur. J. Org. Chem., 2000, p. 133.

  14. Selkti, M., Coleman, A.W., and Nicolis, I., Chem. Commun., 2000, p. 161.

  15. Lee, M., Lee, S.-J., and Jian, L.-H., J. Am. Chem. Soc., 2004, vol. 126, p. 12724.

    Article  CAS  Google Scholar 

  16. Ryu, E.-H. and Zhao, Y., Org. Chem., 2006, vol. 71, p. 9491.

    Article  CAS  Google Scholar 

  17. Shahgaldian, P., Pieles, U., and Hegner, M., Langmuir, 2005, vol. 21, p. 6503.

    Article  CAS  Google Scholar 

  18. Houmadi, S., Coquire, D., Legrand, L., et al., Langmuir, 2007, vol. 23, p. 4849.

    Article  CAS  Google Scholar 

  19. Kazakova, E.Kh., Makarova, N.A., Ziganshina, A.U., and Habicher, W.D., Tetrahedron Lett., 2000, vol. 41, p. 10111.

    Article  CAS  Google Scholar 

  20. Kazakova, E.Kh., Syakaev, V.V., Morozova, Ju.E., et al., J. Inclusion Phenom. Macrocycl. Chem., 2007, vol. 59, p. 143.

    Article  CAS  Google Scholar 

  21. Morozova, Ju.E., Kazakova, E.Kh., Gubanov, E.Ph., et al., J. Inclusion Phenom. Macrocycl. Chem., 2006, vol. 55, p. 173.

    Article  CAS  Google Scholar 

  22. Morozova, Yu.E., Shalaeva, Ya.V., Makarova, N.A., et al., Izv. Akad. Nauk, Ser. Khim., 2009, p. 95.

  23. Syakaev, V.V., Mustafina, A.R., Elistratova, J.G., et al., Supramol. Chem., 2008, vol. 20, p. 453.

    Article  CAS  Google Scholar 

  24. Consoli, M.L., Granata, G., Lo Nigro, R., et al., Langmuir, 2008, vol. 24, p. 6194.

    Article  CAS  Google Scholar 

  25. Aakeroy, Ch., Schultheiss, N., and Desper, Jh., Cryst. Eng. Commun., 2007, vol. 9, p. 211.

    Google Scholar 

  26. Pappalardo, S., Villari, V., Slovak, S., et al., Chem.-Eur. J., 2007, vol. 13, p. 8164.

    Article  CAS  Google Scholar 

  27. Haley, Th.J., Clin. Toxicol., 1979, vol. 14, p. 1.

    Article  CAS  Google Scholar 

  28. Cohen, Y., Avram, L., and Frish, L., Angew. Chem., Int. Ed. Engl., 2005, vol. 44, p. 520.

    Article  CAS  Google Scholar 

  29. Brand, T., Cabrita, E.J., and Berger, S., Prog. Nucl. Magn. Reson. Spectrosc., 2005, vol. 46, p. 159.

    Article  CAS  Google Scholar 

  30. Yatsimirsky, A.K., Principles and Methods in Supramolecular Chemistry, New York: Wiley, 2000.

    Google Scholar 

  31. Neuhaus, D. and Williamson, M.P., The Nuclear Overhauser Effect in Structural and Conformational Analysis, 2nd ed., New York: Wiley-VCH, 2000.

    Google Scholar 

  32. De la Torre, J.G., J. Magn. Reson., 2000, vol. 147, p. 138.

    Article  Google Scholar 

  33. http://www.camsoft.com

  34. Shalaeva, Ya.V., Yanilkin, V.V., Morozova, Yu.E., et al., Kolloidn. Zh., 2010, vol. 72, p. 258.

    Google Scholar 

  35. Schneider, H.J., Guettes, D., and Schneider, U., J. Am. Chem. Soc., 1988, vol. 110, p. 6449.

    Article  CAS  Google Scholar 

  36. Inouye, M., Hashimoto, K., and Isagawa, K., J. Am. Chem. Soc., 1994, vol. 116, p. 5517.

    Article  CAS  Google Scholar 

  37. Schneider, H.J. and Schneider, U., Org. Chem., 1987, vol. 52, p. 1613.

    Article  CAS  Google Scholar 

  38. Koh, K.N., Araki, K., Ikeda, A., et al., J. Am. Chem. Soc., 1996, vol. 118, p. 755.

    Article  CAS  Google Scholar 

  39. www.molinspiration.com

  40. Aoyama, Y., Hayashida, O., Kato, M., and Akagi, K., J. Am. Chem. Soc., 1999, vol. 121, p. 11597.

    Article  Google Scholar 

  41. Hayashida, O., Akagi, K., Matsuo, A., et al., J. Am. Chem. Soc., 2003, vol. 125, p. 594.

    Article  CAS  Google Scholar 

  42. Aoyama, Y., Chem.-Eur. J., 2004, vol. 10, p. 588.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Syakaev, Ya.V. Shalaeva, E.Kh. Kazakova, Yu.E. Morozova, N.A. Makarova, A.I. Konovalov, 2012, published in Kolloidnyi Zhurnal, 2012, Vol. 74, No. 3, pp. 371–380.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syakaev, V.V., Shalaeva, Y.V., Kazakova, E.K. et al. Aggregation and complexation in a series of tetramethylenesulfonate-substituted calix[4]resorcinarenes. Colloid J 74, 346–355 (2012). https://doi.org/10.1134/S1061933X12030118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X12030118

Keywords

Navigation