Skip to main content
Log in

Filament-induced breakdown remote spectroscopy in a polar environment

  • Laser Spectroscopy
  • Published:
Laser Physics

Abstract

We demonstrate the feasibility of filament-induced breakdown spectroscopy (FIBS) for remote sensing of solid samples in a polar environment. FIBS spectra from an aluminum target induced by 800-nm laser pulses propagating in air were probed. The air visibility in an open winter field was as low as 3.2 km fluctuating with precipitation, pressure and relative humidity. Under such polar condition, clean spectral Al I lines from an aluminum target located at a distance of 60 m were obtained. This shows the technique FIBS could be potentially useful for sensing remote targets in a variety of polar environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).

  2. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

  3. A. A. I. Khalil, M. Richardson, L. Johnson, and M. A. Gondal, Laser Phys. 19, 1981 (2009).

    Article  ADS  Google Scholar 

  4. E. L. Surmenko, T. N. Sokolova, Yu. V. Chebotarevsky, and I. A. Popov, Laser Phys. 19, 1373 (2009).

    Article  ADS  Google Scholar 

  5. A. A. I. Khalil, Laser Phys. 20, 238 (2010).

    Article  ADS  Google Scholar 

  6. V. Margetic, A. Pakulev, A. Stockhaus, et al., Spectrochim. Acta, Part B 55, 1771 (2000).

    Article  ADS  Google Scholar 

  7. K. L. Eland, D. N. Stratis, D. M. Gold, et al., Appl. Spectrosc. 55, 286 (2001).

    Article  ADS  Google Scholar 

  8. K. Stelmaszczyk, P. Rohwetter, G. Méjean, et al., Appl. Phys. Lett. 85, 3977 (2004).

    Article  ADS  Google Scholar 

  9. H. L. Xu, W. Liu, and S. L. Chin, Opt. Lett. 31, 1540 (2006).

    Article  ADS  Google Scholar 

  10. S. L. Chin, S. A. Hosseini, W. Liu, et al., Can. J. Phys. 83, 863 (2005).

    Article  ADS  Google Scholar 

  11. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

    Article  ADS  Google Scholar 

  12. L. Berge, S. Skupin, R. Nuter, et al., Rep. Prog. Phys. 70, 1633 (2007).

    Article  ADS  Google Scholar 

  13. J. Kasparian and J.-P. Wolf, Opt. Express 16, 466 (2008).

    Article  ADS  Google Scholar 

  14. V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, Quantum Electron. 39, 205 (2009).

    Article  ADS  Google Scholar 

  15. S. L. Chin, Femtosecond Laser Filamentation (Springer-Verlag, 2010).

  16. T.-J. Wang, J.-F. Daigle, Y. Chen, et al., Laser Phys. Lett. 7, 517 (2010).

    Article  ADS  Google Scholar 

  17. T.-J. Wang, C. Marceau, S. Yuan, et al., Laser Phys. Lett. 8, 57 (2011).

    Article  ADS  Google Scholar 

  18. T.-J. Wang, S. Yuan, Z.-D. Sun, et al., Laser Phys. Lett. 8, 295 (2011).

    Article  Google Scholar 

  19. W. Liu, S. Petit, A. Becker, et al., Opt. Commun. 201, 189 (2002).

    Article  ADS  Google Scholar 

  20. A. Becker, N. Akózbek, K. Vijayalakshmi, et al., Appl. Phys., Ser. B 73, 287 (2001).

    Article  ADS  Google Scholar 

  21. J. Kasparian, R. Sauerbrey, and S. L. Chin, Appl. Phys., Ser. B 71, 877 (2000).

    Article  ADS  Google Scholar 

  22. Z. G. Ji, J. S. Liu, Z. X. Wang, et al., Laser Phys. 20, 886 (2010).

    Article  ADS  Google Scholar 

  23. H. L. Xu, Y. Kamali, C. Marceau, et al., Appl. Phys. Lett. 90, 101106 (2007).

    Article  ADS  Google Scholar 

  24. J.-F. Daigle, G. Méjean, W. Liu, et al., Appl. Phys., Ser. B 87, 749 (2007).

    Article  ADS  Google Scholar 

  25. H. L. Xu, J. Bernhardt, P. Mathieu, et al., J. Appl. Phys. 101, 033124 (2007).

    Article  ADS  Google Scholar 

  26. F. Théberge, N. Akózbek, W. Liu, et al., Phys. Rev. Lett. 97, 023904 (2006).

    Article  ADS  Google Scholar 

  27. W. Liu and S. L. Chin, Phys. Rev., Ser. A 76, 013826 (2007).

    Article  ADS  Google Scholar 

  28. S. Q. Xu, Y. Zhang, W. Liu, and S. L. Chin, Opt. Commum. 282, 4800 (2009).

    Article  ADS  Google Scholar 

  29. M. Rodriguez, R. Bourayou, G. Méjean, et al., Phys. Rev., Ser. E 69, 036607 (2004).

    Article  ADS  Google Scholar 

  30. S. L. Chin, H. L. Xu, Q. Luo, et al., Appl. Phys., Ser. B 95, 1 (2009).

    Article  ADS  Google Scholar 

  31. H. L. Xu and S. L. Chin, Sensors 11, 32 (2011).

    Article  Google Scholar 

  32. M. Cháteauneuf and J. Dubois, http://spie.org/x8496.xml?ArticleID=x8496.

  33. W. Liu, F. Théberge, J. F. Daigle, et al., Appl. Phys., Ser. B 85, 55 (2006).

    Article  ADS  Google Scholar 

  34. Q. Luo, H. L. Xu, S. A. Hosseini, et al., Appl. Phys., Ser. B 82, 105 (2006).

    Article  ADS  Google Scholar 

  35. Q. Luo, J. Yu, S. A. Hosseini, et al., Appl. Opt. 44, 391 (2005).

    Article  ADS  Google Scholar 

  36. S. A. Hosseini, Q. Luo, B. Ferland, et al., Phys. Rev., Ser. A 70, 033802 (2004).

    Article  ADS  Google Scholar 

  37. S. Skupin, L. Bergé, U. Peschel, et al., Phys. Rev., Ser. E 70, 046602 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Xu.

Additional information

Original Text © Astro, Ltd., 2012.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H.L., Simard, P.T., Kamali, Y. et al. Filament-induced breakdown remote spectroscopy in a polar environment. Laser Phys. 22, 1767–1770 (2012). https://doi.org/10.1134/S1054660X12120298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X12120298

Keywords

Navigation