Skip to main content
Log in

Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

The increase of glucose levels in blood changes the viscosity of flowing fluids and shape of the erythrocytes. Both of these can affect the details of light scattering as can be quantified via decorrelation times measured by optical coherence tomography (OCT). The relative contributions of these competing effects have been studied by examining the motion dynamics of deformable asymmetrical (red blood cells, RBCs with ∼7 μm diameter and ∼2 μm thickness) and non deformable symmetrical (polystyrene microspheres, PSM with 1.4 μm diameter) flowing scattering particles. The fluid flow under the action of gravity was modulated by changing the glucose concentrations. Quantitative analysis of the OCT’s M-mode autocorrelation functions enabled the derivations of the translational diffusion coefficients. These systematic studies are aimed at eventual tissue imaging scenarios with speckle-variance OCT to obtain local glucose concentrations maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Yoo and S. Y. Lee, Sensors 10, 4558 (2010).

    Article  Google Scholar 

  2. Q. L. Zhao, J. L. Si., Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, Laser Phys. Lett. 8, 71 (2011).

    Article  ADS  Google Scholar 

  3. R. McNichols, J. Biomed. Opt. 5, 5 (2000).

    Article  ADS  Google Scholar 

  4. G. L. Cote, J. Nutr. 131, 1596S (2001).

    Google Scholar 

  5. H. Bai, P. Chen, H. Fang, L. Lin, G. Q. Tang, G. G. Mu, W. Gong, Z. P. Liu, H. Wu, H. Zhao, and Z. C. Han, Laser Phys. Lett. 8, 78 (2011).

    Article  ADS  Google Scholar 

  6. B. Veksler, E. Kobzev, M. Bonesi, and I. Meglinski, Laser Phys. Lett. 5, 236 (2008).

    Article  ADS  Google Scholar 

  7. M. Atif, H. Ullah, M. Y. Hamza, and M. Ikram, Laser Phys. Lett. 8, 629 (2011).

    Article  Google Scholar 

  8. K. V. Larin, M. Motamedi, M. S. Eledrisi, and R. O. Esenaliev, Diab. Care 25, 2263 (2002).

    Article  Google Scholar 

  9. X. Guo, Z. Y. Guo, H. J. Wei, H. Q. Yang, Y. H. He, S. S. Xie, G. Y. Wu, H. Q. Zhong, L. Q. Li, and Q. L. Zhao, Laser Phys. 20, 1849 (2010).

    Article  ADS  Google Scholar 

  10. R. O. Esenaliev, K. V. Larin, and I. V. Larina, Opt. Lett. 26, 992 (2001).

    Article  ADS  Google Scholar 

  11. H. Q. Zhong, Z. Y. Guo, H. J. Wei, J. L. Si, L. Guo, Q. L. Zhao, C. C. Zeng, H. L. Xiong, Y. H. He, and S. H. Liu, Laser Phys. Lett. 7, 388 (2010).

    Article  ADS  Google Scholar 

  12. H. Q. Zhong, Z. Y. Guo, H. J. Wei, C. C. Zeng, H. L. Xiong, Y. H. He, and S. H. Liu, Laser Phys. Lett. 7, 315 (2010).

    Article  ADS  Google Scholar 

  13. H. Ullah, A. Mariampillai, M. Ikram, and I. A. Vitkin, Laser Phys. 21, 1962 (2011).

    Article  ADS  Google Scholar 

  14. J. D. Ramshaw, Phys. Fluids 22, 1595 (1979).

    Article  ADS  MATH  Google Scholar 

  15. K. Miyazaki and D. Bedeaux, Physica A 217, 53 (1995).

    Article  ADS  Google Scholar 

  16. M. Ninck, M. Untenberger, and T. Gisler, Biomed. Opt. Express 1, 1502 (2010).

    Article  Google Scholar 

  17. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Stan- dish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, Opt. Lett. 35, 1257 (2010).

    Article  ADS  Google Scholar 

  18. M. Kinnunen, R. Myllyla, and S. Vainio, J. Biomed. Opt. 13, 021111 (2008).

    Article  ADS  Google Scholar 

  19. S. Prahl, http://omlc.ogi.edu/calc/mie-calc.html.

  20. Y. L. Jin, J. Y. Chen, L. Xu, and P. N. Wang, Phys. Med. Biol. 51, N371 (2006).

    Article  Google Scholar 

  21. G. Barshtein, I. Tamir, and S. Yedgar, Eur. Biophys. J. 27, 177 (1998).

    Article  Google Scholar 

  22. B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, Current Opinion Biotech. 20, 111 (2009).

    Article  Google Scholar 

  23. R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, K. V. Larin, Laser Phys. Lett. 8, 164 (2011).

    Article  ADS  Google Scholar 

  24. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, Opt. Lett. 33, 1530 (2008).

    Article  ADS  Google Scholar 

  25. V. X. D. Yang, A. Needles, D. Vray, S. Lo, B. C. Wilson, I. A Vitkin, and F. S. Foster, IEEE Ultrasonics Symp. 453 (2004).

  26. J. Solano, M. Vázquez, E. Rubio, I. Sánchez, M. Fuentes, and F. García, Phys. Proced. 3, 605 (2010).

    Article  Google Scholar 

  27. N. Sudheendran, S. H. Syed, M. E. Dickinson, I. V. Larina, and K. V. Larin, Laser Phys. Lett. 8, 247 (2011).

    Article  ADS  Google Scholar 

  28. V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, Opt. Commun. 281, 1755 (2008).

    Article  ADS  Google Scholar 

  29. Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, Laser Phys. Lett. 8, 318 (2011).

    Article  Google Scholar 

  30. J. Moger, J. Biomed. Opt. 9, 982 (2004).

    Article  ADS  Google Scholar 

  31. A. M. Awwad, R. J. White., G. D. O. Lowe, and C. D. Forbes, British J. Plastic Surg. 36, 383 (1983).

    Google Scholar 

  32. R. Darby, Chemical Engineering Fluid Mechanics (Marcel Dekker Inc., New York, NY, 2001).

    Google Scholar 

  33. K. K. Bizheva, A. M. Siegel, and D. A. Boas, Phys. Rev. E 58, 7664 (1998).

    Article  ADS  Google Scholar 

  34. M. Breczinski, Optical Coherence Tomography: Principles and Applications (Elsevier, San Diego, 2006).

    Google Scholar 

  35. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Dover, Mineola, New York, 2000).

    Google Scholar 

  36. R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, Phys. Rev. E 83, 040903 (2011).

    Article  ADS  Google Scholar 

  37. D. Rusu, D. Genoe, P. van Puyvelde, E. Peuvrel-Dis- dier, P. Navard, and G. G. Fuller, Polym. 40, 1353 (1999).

    Article  Google Scholar 

  38. Z. Li, H. Li, J. Li, and X. Lin, Laser Phys. 21, 1995 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  39. Y. Cinar, A. M. Senyol, and Kamber Duman, Amer. J. Hypertension 14, 433 (2001).

    Article  Google Scholar 

  40. A. Doronin, I. Fine, and I. Meglinski, Laser Phys. 21, 1972 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ullah.

Additional information

Original Text © Astro, Ltd., 2012.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullah, H., Davoudi, B., Mariampillai, A. et al. Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography. Laser Phys. 22, 797–804 (2012). https://doi.org/10.1134/S1054660X12040251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X12040251

Keywords

Navigation