Skip to main content
Log in

Coherence properties of thermally stimulated fields of solids

  • Reviews
  • Published:
Laser Physics

Abstract

Various definitions of spatial and temporal correlative properties of spontaneous steady-state classical and quantum processes are considered and the key properties of the processes are described. A relation of correlative properties of thermally stimulated fields with the frequency dependence of the dielectric function is demonstrated. A dependence of the correlative properties of the thermally stimulated fields in the near-field regime on the distance from a solid surface is presented. It is demonstrated that the characteristic spatial and temporal scales of the evanescent part of the thermally stimulated field are unambiguously determined by the specific properties of the dispersion relation of surface polaritons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Rytov, Theory of Electrical Fluctuations and Thermal Radiation (AN SSSR, Moscow, 1953) [in Russian].

    Google Scholar 

  2. S. M. Rytov, Introduction to Statistical Radiophysics, Part I (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  3. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics, Part II (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  4. M. L. Levin and S. M. Rytov, Theory of Equilibrium Thermal Fluctuations in Electrodynamics (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  5. R. Carminati and J.-J. Greffet, Phys. Rev. Lett. 8, 1660 (1999).

    Article  ADS  Google Scholar 

  6. C. Henkel, K. Joulain, R. Carminati, and J.-J. Greffet, Opt. Commun. 186, 57 (2000).

    Article  ADS  Google Scholar 

  7. K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, Surf. Sci. Rep. 57, 59 (2005).

    Article  ADS  Google Scholar 

  8. T. Setälä, M. Kaivola, and A. T. Friberg Phys. Rev. Lett. 88, 123902–1 (2002).

    Article  ADS  Google Scholar 

  9. E. A. Vinogradov and I. A. Dorofeev, Phys. Usp. 52, 449 (2009).

    Google Scholar 

  10. E. Wolf, Proc. R. Soc. A 230, 246 (1955)

    Article  ADS  Google Scholar 

  11. E. Wolf, Proc. Phys. Soc. 71, 257 (1958)

    Article  ADS  MATH  Google Scholar 

  12. C. L. Mehta and E. Wolf, “Correlation Theory of Quantized Electromagnetic Fields. I. Dynamical Equations and Conservation Laws,” Phys. Rev. 157, 1183–1187 (1967).

    Article  ADS  Google Scholar 

  13. R. J. Glauber, “The Quantum Theory of Optical Coherence,” Phys. Rev. 130, 2529–2539 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  14. C. L. Mehta and E. Wolf, “Coherence Properties of Black Body Radiation. I. Correlation Tensors of the Classical Field,” Phys. Rev. A 134, 1143–1149 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  15. C. L. Mehta and E. Wolf, “Coherence Properties of Black Body Radiation. II. Correlation Tensors of the Quantized Field,” Phys. Rev. A 134, 1149–1153 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  16. E. Wolf and L. Mandel’, “Coherence Properties of Optical Fields. I,” Usp. Fiz. Nauk 87, 491–520 (1965).

    Google Scholar 

  17. E. Wolf and L. Mandel’, “Coherence Properties of Optical Fields. II,” Usp. Fiz. Nauk 88, 347–366 (1966).

    Google Scholar 

  18. J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics (Benjamin, New York, 1968; Mir, Moscow, 1970).

    Google Scholar 

  19. D. N. Klyshko, Physical Principles of Quantum Electronics (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

    Google Scholar 

  21. W. B. Davenport, Jr. and W. L. Root, Introduction to Random Signals and Noise (McGraw-Hill, New York, 1958; Inostrannaya Literatura, Moscow, 1960).

    MATH  Google Scholar 

  22. G. S. Agarwal, “Quantum Electrodynamics in the Presence of Dielectrics and Conductors. I. Electromagnetic-Field Response Functions and Black-Body Fluctuations in Finite Geometries”, Phys. Rev. A 11, 230–242 (1975).

    Article  ADS  Google Scholar 

  23. V. S. Vladimirov, Generalized Functions in Mathematical Physics (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  24. V. V. Batygin and I. N. Toptygin, Problems in Electrodynamics (Nauka, Moscow, 1970; Academic, London, 1978).

    Google Scholar 

  25. W. Heitler, The Quantum Theory of Radiation, 3rd ed. (Clarendon Press, Oxford, 1954; Gos. Izd-vo Tekh.-Teor. Lit., Moscow, 1940).

    MATH  Google Scholar 

  26. C. K. Carniglia and L. Mandel, “Quantization of Evanescent Electromagnetic Waves,” Phys. Rev. D 3, 280–296 (1971).

    Article  ADS  Google Scholar 

  27. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd ed. (Clarendon, Oxford, 1948; Gos. Izd. Tekh.-Teor. Lit., Moscow, 1948).

    Google Scholar 

  28. N. N. Bogolyubov and S. V. Tyablikov, “Retarded and Advanced Green Functions in Statistical Physics,” Dokl. Akad. Nauk SSSR 126, 53–56 (1959) [Sov. Phys. Dokl. 4, 589 (1959)].

    Google Scholar 

  29. D. Zubarev, “Double-Time Green Functions in Statistical Physics,” Usp. Fiz. Nauk 71, 71–116 (1960) [Sov. Phys. Usp. 3, 320 (1960)].

    MathSciNet  Google Scholar 

  30. R. Kubo, “Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems,” J. Phys. Soc. Jpn. 12, 570–586 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  31. V. L. Bonch-Bruevich and S. V. Tyablikov, The Green Function Method in Statistical Mechanics (Fizmatgiz, Moscow, 1961; North-Holland, Amsterdam, 1962).

    Google Scholar 

  32. M. F. Sarry, “Analytical Methods of Calculating Correlation Functions in Quantum Statistical Physics,” Usp. Fiz. Nauk 161, 49–92 (1991).

    Article  Google Scholar 

  33. N. N. Bogolyubov and O. S. Parasyuk, “On Analytical Continuation of Generalized Functions,” Dokl. Akad. Nauk SSSR 109, 717 (1956).

    MATH  MathSciNet  Google Scholar 

  34. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons (Nauka, Moscow, 1965; Springer, Berlin, 1984).

    Google Scholar 

  35. E. A. Vinogradov, Phys. Rep. 217, 159 (1992).

    Article  MATH  ADS  Google Scholar 

  36. E. A. Vinogradov, Usp. Fiz. Nauk 172, 347, 1371 (2002) [Phys. Usp. 45, 325, 1213 (2002)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Dorofeyev.

Additional information

Original Text © Astro, Ltd., 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorofeyev, I.A., Vinogradov, E.A. Coherence properties of thermally stimulated fields of solids. Laser Phys. 21, 1–24 (2011). https://doi.org/10.1134/S1054660X10160024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X10160024

Keywords

Navigation