Skip to main content
Log in

Influence of nanotwin generation near crack twins on the fracture toughness of nanomaterials

  • Mechanics
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

A theoretical model of microscopic mechanisms of the nucleation and development of deformation twins in nanocrystalline materials has been developed. Within the model, we have studied the generation of deformation twins near crack tips, which occurs through multiple nanoscopic shears that represent nanoscopic regions of an ideal plastic shear. It has been shown that the nucleation of such nanotwins near crack tips reduces the high local stresses that arise near these tips. Thus, the generation and development of nanotwins near crack tips increases the fracture toughness of brittle nanocrystalline materials and serves as an efficient mechanism of improving the crack resistance of deformed nanocrystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aronin, G. Abrosimova, D. Matveev, and O. Rybchenko, Rev. Adv. Mater. Sci. 25(1), 52 (2010).

    Google Scholar 

  2. N. F. Morozov, Mathematical Problems of the Theory of Cracks (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  3. A. S. Khan, Y. S. Suh, X. Chen, L. Takacs, and H. Zhang, Int. J. Plasticity 22, 195 (2006).

    Article  MATH  Google Scholar 

  4. G.-D. Zhan and A. K. Mukherjee, Rev. Adv. Mater. Sci. 10(3), 185 (2005).

    Google Scholar 

  5. N. F. Morozov, I. A. Ovid’ko, A. G. Sheinerman, and E. C. Aifantis, Fiz. Mekh. Mater. 8(2) (2009).

    Google Scholar 

  6. V. L. Likhachov, A. I. Vergazov, V. V. Rybin, and Yu. V. Solomko, Fiz. Met. Metalloved. 43(1), 70 (1977).

    Google Scholar 

  7. V. V. Rybin, TRANSL (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  8. S. V. Bobylev, A. K. Mukherjee, I. A. Ovid’ko, and A. G. Sheinerman, Int. J. Plasticity 26(11), 1629 (2010).

    Article  MATH  Google Scholar 

  9. Y. T. Zhu, X. Z. Liao, and X. L. Wu, Prog. Mater. Sci. 57(1), 1 (2012).

    Article  Google Scholar 

  10. Y. T. Zhu, X. L. Wu, X. Z. Liao, J. Narayan, S. N. Matha- udhu, and L. J. Kecskes, Appl. Phys. Lett. 95, 031909 (2009).

    Article  ADS  Google Scholar 

  11. I. A. Ovid’ko and A. G. Sheinerman, Rev. Adv. Mater. Sci. 27(2), 189 (2011).

    Google Scholar 

  12. N. F. Morozov, I. A. Ovid’ko, A. G. Sheinerman, and N. V. Skiba, Rev. Adv. Mater. Sci. 32(1), 75 (2012).

    Google Scholar 

  13. J. P. Hirth and J. Lothe, Theory of Dislocations (Wiley, New York, 1982; Atomizdat, Moscow, 1972).

    Google Scholar 

  14. Mechanics of Fracture and Strength of Materials, Ed. by V. V. Panasyuk (Naukova Dumka, Kiev, 1988) [in Russian].

    Google Scholar 

  15. N. F. Morozov, I. A. Ovid’ko, A. G. Sheinerman, and E. C. Aifantis, J. Mech. Phys. Solids 58, 1088 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.F. Morozov, I.A. Ovid’ko, N.V. Skiba, A.G. Sheinerman, 2013, published in Doklady Akademii Nauk, 2013, Vol. 453, No. 6, pp. 630–633.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozov, N.F., Ovid’ko, I.A., Skiba, N.V. et al. Influence of nanotwin generation near crack twins on the fracture toughness of nanomaterials. Dokl. Phys. 58, 544–547 (2013). https://doi.org/10.1134/S1028335813120082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335813120082

Keywords

Navigation