Skip to main content
Log in

Vacuum ultraviolet smoothing of nanometer-scale asperities of Poly(methyl methacrylate) surface

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Smoothing of the nanometer-scale asperities of a poly(methyl methacrylate) (PMMA) film using vacuum ultraviolet (VUV) with the wavelength λ = 123.6 nm was studied. The exposure time and the residual air pressure in an working chamber were varied during the process of VUV treatment. A nanostructured surface of PMMA film is used as a sample to be exposed. The nanostructured surface of the PMMA film was obtained by treating the initially smooth spin-coated film in oxygen radio-frequency plasma. The degree of VUV exposure is estimated using changes in the morphology and roughness of the nanostructured surface, which were determined by atomic-force microscopy (AFM). Recognition of morphological surface features on the AFM-images and determination of main geometrical characteristics of these features are performed by using virtual feature-oriented scanning method. It is discovered by morphology and Fourier spectra that the nanostructured surface of the PMMA film is partially ordered. The developed VUV smoothing procedure can be used to treat the electron-beam, UV, and X-ray sensitive PMMA resists, PMMA elements of microelectromechanical systems, biomedical PMMA implants, as well as to certify nanotechnological equipment incorporating UV radiation sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. H. H. Solak, J. Phys. D. 39, R171 (2006).

    Article  CAS  ADS  Google Scholar 

  2. E. Dubois and J.-L. Bubbendorff, Solid-State Electron. 43, 1085 (1999).

    Article  CAS  ADS  Google Scholar 

  3. J. Hartwich, L. Dreeskornfeld, V. Heisig, et al., Appl. Phys. A 66, S685 (1998).

    Article  CAS  ADS  Google Scholar 

  4. L. J. Guo, J. Phys. D. 37, R123 (2004).

    Article  CAS  ADS  Google Scholar 

  5. F. Zhang and H. Y. Low, Nanotecnology 17, 1884 (2006).

    Article  ADS  Google Scholar 

  6. K.-S. Kim, Y. Ando, and K.-W. Kim, Nanotecnology 19, 105701 (2008).

    Article  ADS  Google Scholar 

  7. Y. Guo, G. Liu, Y. Xiong, and Y. Tian, J. Micromech. Microeng. 17, 9 (2007).

    Article  ADS  Google Scholar 

  8. J. M. Li, C. Liu, X. D. Dai, et al., J. Micromech. Microeng. 18, 095021 (2008).

    Article  ADS  Google Scholar 

  9. M. Haiducu, M. Rahbar, I. G. Foulds, et al., J. Micro-mech. Microeng. 18, 115029 (2008).

    Article  ADS  Google Scholar 

  10. S. E. Pel’tek, T. N. Goryachkovskaya, V. M. Popik, et al., Ross. Nanotekhnol. 3(9–10), 136 (2008).

    Google Scholar 

  11. S. W. Li, J. H. Xu, Y. J. Wang, et al., J. Micromech. Microeng. 19, 015035 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  12. M. E. Vlachopoulou, A. Tserepi, P. Pavli, et al., J. Micromech. Microeng. 19, 015007 (2009).

    Article  ADS  Google Scholar 

  13. A. Nisar, N. Afzulpurkar, B. Mahaisavariya, and A. Tuantranont, Sens. Transducers 94, 176 (2008).

    CAS  Google Scholar 

  14. N. Gomathi, A. Sureshkumar, and S. Neogi, Current Sci. 94, 1478 (2008).

    CAS  Google Scholar 

  15. K. A. Valiev, L. V. Velikov, Yu. I. Dorofeev, et al., Poverkh-nost: Fiz. Khim. Mekh., No. 6, 86 (1985).

    Google Scholar 

  16. C. Peth, F. Barkusky, and K. Mann, J. Phys. D. 41, 105202 (2008).

    Article  ADS  Google Scholar 

  17. J. Chai, F. Lu, B. Li, and D. Y. Kwok, Langmuir 20, 10919 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. H. Lim, Y. Lee, S. Han, et al., J. Vac. Sci. Technol. A 19, 1490 (2001).

    Article  CAS  ADS  Google Scholar 

  19. N. Vourdas, A. Tserepi, and E. Gogolides, Nanotecnology 18, 125304 (2007).

    Article  ADS  Google Scholar 

  20. S. Yoshida, T. Ono, and M. Esashi, Nanotecnology 19, 475302 (2008).

    Article  ADS  Google Scholar 

  21. D. K. Singh, R. V. Krotkov, H. Xiang, et al., Nanotecnology 19, 245305 (2008).

    Article  ADS  Google Scholar 

  22. J. H. Choi, S. M. Adams, and R. Ragan, Nanotecnology 20, 065301 (2009).

    Article  CAS  ADS  Google Scholar 

  23. S. Magonov and Y. Godovsky, Am. Lab. 31, 52 (1999).

    CAS  Google Scholar 

  24. J. F. Jorgensen, K. Carneiro, and L. L. Madsen, Nanotecnology 4, 152 (1993).

    Article  CAS  ADS  Google Scholar 

  25. Ya. A. Rudzit and V. N. Plutalov, in Principles of Metrology, Precision and Reliability in Instrument Design (Mashi-nostroenie, Moscow, 1991) [in Russian].

    Google Scholar 

  26. R. V. Lapshin, Nanotecnology 15, 1135 (2004); www.niifp.ru/staff/lapshin/en.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Lapshin.

Additional information

Original Russian Text © R.V. Lapshin, A.P. Alekhin, A.G. Kirilenko, S.L. Odintsov, V.A. Krotkov, 2010, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, No. 1, pp. 5–16.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapshin, R.V., Alekhin, A.P., Kirilenko, A.G. et al. Vacuum ultraviolet smoothing of nanometer-scale asperities of Poly(methyl methacrylate) surface. J. Surf. Investig. 4, 1–11 (2010). https://doi.org/10.1134/S1027451010010015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451010010015

Keywords

Navigation