Skip to main content
Log in

Microwave and optical observations of ozone and temperature of the middle atmosphere during stratospheric warming in Western Siberia

  • Atmospheric Radiation, Optical Weather, and Climate
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

We present the results of combined ground-based measurements of vertical ozone and temperature profiles with the use of microwave and lidar instrumentation during stratospheric warming. Marked variations in ozone concentration and temperature in the middle atmosphere are recorded during wintertime warming (December, 2012–January, 2013). The ozone concentration at altitude levels from 25 to 60 km increased by a factor of 1.5–2, with the amplitude of ozone variations substantially increased. The peak of the positive deviation of temperature from the monthly average value reached 70 K at a height of 30 km. The daily variations in ozone at a height of 60 km, associated with sunset and sunrise, were about 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Waters, L. Froidevaux, R. S. Harwood, R. F. Jarnot, et al., “The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite,” IEEE Trans. Geosci. Remote Sens. 44(5), 1075–1092 (2006).

    Article  ADS  Google Scholar 

  2. Yu. Yu. Kulikov, A. A. Krasil’nikov, and V. G. Ryskin, “Microwave studies of the structure of the polar-latitude ozone layer during winter anomalous warming events in the stratosphere,” Izv., Atmos. Ocean. Phys. 38(2), 158–166 (2002).

    Google Scholar 

  3. J. J. Barnett and M. Corney, “Middle atmosphere reference model derived from satellite data,” Handbook for MAP 16, 47–85 (1985).

    Google Scholar 

  4. V. N. Marichev, “Lidar investigations of stratospheric warming events above Tomsk in 2008–2010,” Opt. Atmosf. Okeana 24(5), 386–391 (2011).

    Google Scholar 

  5. http://acd-ext.gsfc.nasa.gov/Data-services/met/ann_data.html

  6. A. A. Krasil’nikov, Yu. Yu. Kulikov, V. G. Ryskin, and A. M. Shchitov, “Microwave detectors for diagnostics of trace gases in the Earth’s atmosphere,” Izv. Akad. Nauk, Ser. Fiz. 67(12), 1788–1792 (2003).

    Google Scholar 

  7. A. A. Krasil’nikov, Yu. Yu. Kulikov, V. G. Ryskin, V. M. Demkin, L. M. Kukin, V. L. Mikhailovskii, V. N. Shanin, M. Z. Sheiner, V. A. Shumilov, and A. M. Shchitov, “A new compact microwave spectroradiometer-ozonometer,” Instrum. Exp. Tech. 54(1), 118–123 (2011).

    Article  Google Scholar 

  8. V. N. Marichev, G. G. Matvienko, A. A. Lisenko, V. Yu. Ilyushik, Yu. Yu. Kulikov, A. A. Krasil’nikov, and V. G. Ryskin, “First results of an integrated experiment on sounding the middle atmosphere in optical and millimeter wavelength ranges (over Tomsk),” Atmos. Ocean. Opt. 26(3), 222–226 (2013).

    Article  Google Scholar 

  9. http://weather.uwyo.edu/upperair/sounding.html

  10. http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=omi

  11. http://mirador.gsfc.nasa.gov/cgi-bin/mirador/presentNavigation.pl?tree=project&project=MLS

  12. A. V. El’nikov, G. M. Krekov, and V. N. Marichev, “Lidar observation of stratospheric aerosol over Western Siberia,” Fiz. Atmos. 24(8), 818–823 (1988).

    Google Scholar 

  13. A. Hauchecorne and M.-L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 75 km,” Geophys. Rev. Lett. 7(8), 565–568 (1980).

    Article  ADS  Google Scholar 

  14. G. Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere (Riedel, Dordrecht, 1986).

    Book  Google Scholar 

  15. Yu. Yu. Kulikov, V. G. Ryskin, A. A. Krasil’nikov, and L. M. Kukin, “Microwave observations of ozone variability in the high-latitude stratosphere in the 2002/2003 winter,” Radiophys. Quantum El. 48(2), 120–126 (2005).

    Article  ADS  Google Scholar 

  16. V. N. Marichev, “Lidar studies of features of winter warming events over Tomsk in 2010/11, 2011/12, and 2012/13,” in Basic and Applied Scientific Problems. Vol. 6. Proc. VIII Intern. Symp. (Rus. Acad. Sci., Moscow, 2013), pp. 73–78 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Marichev.

Additional information

Original Russian Text © V.N. Marichev, G.G. Matvienko, A.A. Lisenko, D.A. Bochkovsky, Yu.Yu. Kulikov, A.A. Krasilnikov, V.G. Ryskin, V.M. Demkin, 2014, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marichev, V.N., Matvienko, G.G., Lisenko, A.A. et al. Microwave and optical observations of ozone and temperature of the middle atmosphere during stratospheric warming in Western Siberia. Atmos Ocean Opt 27, 499–505 (2014). https://doi.org/10.1134/S1024856014060141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856014060141

Keywords

Navigation