Skip to main content
Log in

Study of nanostructured electrocatalysts synthesized by the platinum magnetron–ion-beam sputtering onto metallized nanostructured carbonaceous support

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured electrocatalysts for hydrogen electrochemical systems with solid polymer electrolyte were synthesized by the platinum magnetron–ion-beam sputtering onto nanostructured carbonaceous support Vulcan XC-72 premetallized by the impregnation–reduction method. To be able to perform comparative analysis, a number of mono- and bimetallic catalyst samples was synthesized using impregnation–reduction, a traditional method. Thus prepared catalysts were examined by thermogravimetric method, transmission electron microscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and cyclic voltammetry. The electrodes prepared with the synthesized catalysts were tested in fuel cell and water electrolyzer with solid polymer electrolyte. This study confirmed the possibility of preparation of multicomponent catalysts with complicated structures (such as the core–shell structure) over nanostructured carbon support by magnetron sputtering and demonstrated the effectiveness of their performance as parts of electrochemical systems with solid polymer electrolyte. The effect of additional ionbeam processing of the Pt/C electrocatalysts on their efficiency is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ralph, T.R. and Hogarth, M.P., Platinum Metals Review, 2002, vol. 46, p. 3.

    CAS  Google Scholar 

  2. Grigoriev, S.A., Elektrokhim. Energetika, 2009, vol. 9, no. 1, p. 18.

    Google Scholar 

  3. Kizling, M.B. and Jaras, S.G., Appl. Catal. A: Gen, 1996, vol. 147, p. 1.

    Article  Google Scholar 

  4. Brault, P., Surf. Coatings Technol., 2011, vol. 205, p. 15.

    Article  Google Scholar 

  5. Hirano, S., Kim, J., and Srinivasan, S., Electrochim. Acta, 1997, vol. 42, p. 1587.

    Article  CAS  Google Scholar 

  6. Kim, H., Lee, J., and Kim, J., J. Power Sources, 2008, vol. 180, p. 191.

    Article  CAS  Google Scholar 

  7. Alvisi, M., Galtieri, G., Giorgi, L., Giorgi, R., Serra, E., and Signore, M.A., Surf. Coatings Technol., 2005, vol. 200, p. 1325.

    Article  CAS  Google Scholar 

  8. Cavarroc, M., Ennadjaoui, A., Mougenot, M., Brault, P., Escalier, R., Tessier, Y., Durand, J., Roualdes, S., Sauvage, T., and Coutanceau, C., Electrochem. Commun., 2009, vol. 11, p. 859.

    Article  CAS  Google Scholar 

  9. Thomann, A.-L., Rozenbaum, J.P., Brault, P., Andreazza-Vignolle, C., and Andreazza, P., Appl. Surf. Sci., 2000, vol. 158, p. 172.

    Article  CAS  Google Scholar 

  10. Andreazza, P., Andreazza-Vignolle, C., Rozenbaum, J.P., Thomann, A.-L., and Brault, P., Surf. Coatings Technol., 2002, vol. 151–152, p. 122.

    Article  Google Scholar 

  11. Huang, K.-L., Lai, Y.-C., and Tsai, C.-H., J. Power Sources, 2006, vol. 156, p. 224.

  12. Wang, H., Xu, C., Cheng, F., Zhang, M., Wang, S., and Ping, J.-S., Electrochem. Commun., 2008, vol. 10, p. 1575.

    Article  CAS  Google Scholar 

  13. Mougenot, M., Caillard, A., Brault, P., Baranton, S., and Coutanceau, C., Int. J. Hydrogen Energy, 2011, vol. 36, p. 8429.

    Article  CAS  Google Scholar 

  14. Brouzgou, A., Song, S.Q., and Tsiakaras, P., Appl. Catalysis B: Env., 2012, vol. 127, p. 371.

    Article  CAS  Google Scholar 

  15. Antolini, E., Energy Environ. Sci., 2009, vol. 2, p. 915.

    Article  CAS  Google Scholar 

  16. Grigoriev, S.A., Lyutikova, E.K., Martemianov, S., and Fateev, V.N., Int. J. Hydrogen Energy, 2007, vol. 32, p. 4438.

    Article  CAS  Google Scholar 

  17. Massen, C., Mortimer-Jones, T.V., and Johnston, R.L., J. Chem. Soc., Dalton Trans., 2002, vol. 23, p. 4375.

    Article  Google Scholar 

  18. Yashiro, H. and Hoshino, K., Adv. X-ray Analysis, 2004, vol. 47, p. 256.

    CAS  Google Scholar 

  19. Ammam, M. and Bradley, E., J. Power Sources, 2013, vol. 222, p. 79.

    Article  CAS  Google Scholar 

  20. Bliznakov, S.T., Vukmirovic, M.B., Yang, L., Sutter, E.A., and Adzic, R.R., J. Electrochem. Soc., 2012, vol. 159, p. F501.

  21. Mariappan, S. and Drillet, J.F., Abstracts DECHEMAForschungsinstitut Research Projects, 2012, p. 41.

    Google Scholar 

  22. Cai, Y. and Adzic, R., Adv. Phys. Chem., 2011, p. 1.

    Google Scholar 

  23. Fedotov, A.A., Grigoriev, S.A., Glukhov, A.S., Dzhus’, K.A., and Fateev, V.N., Kinet. Katal., 2012, vol. 53, p. 803.

    Article  Google Scholar 

  24. Fedotov, A.A., Grigoriev, S.A., Millet, P., and Fateev, V.N., Int. J. Hydrogen Energy, 2013, vol. 38, p. 8568.

    Article  CAS  Google Scholar 

  25. Grigoriev, S.A., Fedotov, A.A., Martemianov, S.A., and Fateev, V.N., Russ. J. Electrochem., 2014, vol. 50, p. 638.

    Article  CAS  Google Scholar 

  26. Grigoriev, S.A., Millet, P., and Fateev, V.N., J. Power Sources, 2008, vol. 177, p. 281.

    Article  CAS  Google Scholar 

  27. Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Y.V., Nucl. Instr. Meth. Phys. Res. A, 2009, vol. 603, p. 95.

    Article  CAS  Google Scholar 

  28. Trofimova, N.N., Veligzhanin, A.A., Murzin, V.Yu., Chernyshov, A.A., Khramov, E.V., Zabluda, V.N., Edel’man, I.S., Slovokhotov, Yu.L., and Zubavichus, Ya.V., Ros. Nanotekhnologii, 2013, vol. 8, no. 5–6, p. 108.

    Google Scholar 

  29. Hammersley, A.P., FIT2D, V9.129. Reference Manual. V3.1. ESRF Internal Report: ESRF98HA01T. 1998.

    Google Scholar 

  30. Petricek, V., Dusek, M., and Palatinus, L., Jana2006. The Crystallographic Computing System, Prague, Czech Republic: Inst. Physics, 2006.

    Google Scholar 

  31. Ravel, B. and Newville, M., J. Synchrotron Rad., 2005, vol. 12, no. 4, p. 537.

    Article  CAS  Google Scholar 

  32. Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D., Phys. Rev. B, 1998, vol. 58, p. 7565.

    Article  CAS  Google Scholar 

  33. Grigoriev, S.A., Lyutikova, E.K., Martemianov, S., and Fateev, V.N., Int. J. Hydrogen Energy, 2007, vol. 32, p. 4438.

    Article  CAS  Google Scholar 

  34. Volobuev, S.A., Grigoriev, S.A., Glukhov, A.S., and Fedotov, A.A., RF Patent no. 2496919 (2012).

  35. Ruffino, F., Pecora, E.F., and Grimaldi, M.G., J. Nanosci. Nanotechnol., 2012, vol. 12, p. 1.

    Article  Google Scholar 

  36. Grigoriev, S.A., Lyutikova, E.K., Pritulenko, E.G., Samsonov, D.P., and Fateev, V.N., Russ. J. Electrochem., 2006, vol. 42, p. 1251.

    Article  Google Scholar 

  37. Viet Long, N., Duy Hien, T., Asaka, T., Ohtaki, M., and Nogami, M., Int. J. Hydrogen Energy, 2011, vol. 36, p. 8478.

    Article  Google Scholar 

  38. Sanchez-Padilla, N.M., Montemayor, S.M., Torres, L.A., and Rodriguez Varela, F.J., Int. J. Hydrogen Energy, 2013, vol. 38, p. 12681.

    Article  CAS  Google Scholar 

  39. Viet Long, N., Yang, Y., Minh Thi, C., Van Minh, N., Cao, Y., and Nogami, M., Nano Energy, 2013, vol. 2, p. 636.

    Article  Google Scholar 

  40. Zhu, H., Luo, M., Zhang, S., Wei, L., Wang, F., Wang, Z., Wei, Y., and Han, K., Int. J. Hydrogen Energy, 2013, vol. 38, p. 3323.

    Article  CAS  Google Scholar 

  41. Ohashi, M., Beard, K.D., Ma, S., Blom, D.A., St-Pierre, J., Van Zee, J.W., and Monnier, J.R., Electrochim. Acta, 2010, vol. 55, p. 7376.

    Article  CAS  Google Scholar 

  42. Wu, Y.-N., Liao, S.-J., Guo, H.-F., and Hao, X.-Y., J. Power Sources, 2013, vol. 235, p. 135.

    Article  CAS  Google Scholar 

  43. Marshall, A.T., Sunde, S., Tsypkin, M., and Tunold, R., Int. J. Hydrogen Energy, 2007, vol. 32, p. 2320.

    Article  CAS  Google Scholar 

  44. van der Merwe, J., Uren, K., van Schoor, G., and Bessarabov, D., Int. J. Hydrogen Energy, 2014, vol. 39, p. 14212.

    Article  Google Scholar 

  45. Fedotov, A.A., Grigoriev, S.A., Glukhov, A.S., Dzhus’, K.A., and Fateev, V.N., Kinet. Katal., 2012, vol. 53.

  46. Ficilar, B., Bayrakceken, A., and Eroglu, I., J. Power Sources, 2009, vol. 193, p. 17.

    Article  Google Scholar 

  47. Thanasilp, S. and Hunsom, M., Renewable Energy, 2011, vol. 36, p. 1795.

    Article  CAS  Google Scholar 

  48. Al-Akraa, I.M., Mohammad, A.M., El-Deab, M.S., and El-Anadouli, B.E., Int. J. Hydrogen Energy, 2015, vol. 40, p. 1789.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Grigoriev.

Additional information

Based on the paper presented at the XII Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka (Russia), July 3–5, 2014.

Original Russian Text © S.A. Grigoriev, A.A. Fedotov, V.Yu. Murzin, E.V. Khramov, Ya.V. Zubavichus, P. Millet, E.K. Lyutikova, S.A. Martemianov, V.N. Fateev, 2015, published in Elektrokhimiya, 2015, Vol. 51, No. 9, pp. 915–929.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoriev, S.A., Fedotov, A.A., Murzin, V.Y. et al. Study of nanostructured electrocatalysts synthesized by the platinum magnetron–ion-beam sputtering onto metallized nanostructured carbonaceous support. Russ J Electrochem 51, 807–819 (2015). https://doi.org/10.1134/S1023193515090062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515090062

Keywords

Navigation