Skip to main content
Log in

Facile preparation of La(OH)3 and La2O3 nanorods aligned along the electrode surface: Pulsed cathodic deposition followed by heat-treatment

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

La(OH)3 was deposited from nitrate bath via pulsed cathodic electrodeposition at a typical on-time and off-time (t on = 10 ms and t off = 40 ms). The obtained deposit was then heat treated at 600°C for 3 h in dry air atmosphere. The structural and morphological characterizations via XRD, CFTN, FT-IR and SEM techniques revealed that one-dimensional (1D) La(OH)3 nanorods have been prepared at the applied pulse conditions. It was also observed that heat-treatment of the prepared La(OH)3 nanorods promotes the formation of La2O3 nanorods without any change in their morphology. Mechanism of the formation and the growth of La(OH)3 nanorods was proposed on base of the hydrogen bubbles dynamic template. The results showed that horizontally aligned nanorods of La(OH)3 and La2O3 can be easily prepared by the pulse deposition followed by heat-treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jayakumar, O.D., Salunke, H.G., Kadam, R.M., Mohapatra, M., Yaswat, G., and Kulshreshtha, S.K., Nanotechnology, 2006, vol. 17, p. 1278.

    Article  CAS  Google Scholar 

  2. Kriha, O., Zhao, L., Pippel, E., Gosele, U., Wehrspohn, R.B., Steinhart, M., and Greiner, A., Adv. Funct. Mater., 2007, vol. 17, p. 1327.

    Article  CAS  Google Scholar 

  3. Rosynek, M.P. and Magnuson, D.T., J. Catal., 1977, vol. 46, p. 402.

    Article  CAS  Google Scholar 

  4. Gopal Reddy, C.V. and Manorama, S.V., J. Electrochem. Soc., 2000, vol. 147, p. 390.

    Article  Google Scholar 

  5. Yamada, H., Shimizu, T., Kurokawa, A., Ishii, K., and Suzuki, E., J. Electrochem. Soc., 2003, vol. 150, p. G429.

    Article  CAS  Google Scholar 

  6. Liu, X., Yan, L., and Zou, J., J. Electrochem. Soc., 2010, vol. 157, p. 1.

    Article  Google Scholar 

  7. Mao, G., Zhang, H., Li, H., Jin, J., and Niu, S., J. Electrochem. Soc., 2012, vol. 159, p. J48.

    Article  CAS  Google Scholar 

  8. Das, T., Mahata, C., Mallik, S., Varma, S., Sutradhar, G., Bose, P.K., and Maiti, C.K., J. Electrochem. Soc., 2012, vol. 159, p. H323.

    Article  CAS  Google Scholar 

  9. Andriamasinoro, D., Kieffer, R., Kiennemann, A., and Poix, P., Appl. Catal. A, 1993, vol. 106, p. 201.

    Article  CAS  Google Scholar 

  10. Schaper, H., Doesburg, E.B.M., and Van Reijen, L.L., Appl. Catal., 1983, vol. 7, p. 211.

    Article  CAS  Google Scholar 

  11. Muttay, E.P., Tsai, T., and Barnett, S.A., Nature, 1999, vol. 400, p. 649.

    Article  Google Scholar 

  12. Zhang, D., Shi, S., Luo, M., and Zhou, J., Ceram. Int., 2013, vol. 39, p. 6299.

    Article  CAS  Google Scholar 

  13. Tissue, B.M., Chem. Mater., 1998, vol. 10, p. 2837.

    Article  CAS  Google Scholar 

  14. Cui, Y., Zhang, H., Xu, H., and Li, W., Appl. Catal. A, 2007, vol. 331, p. 60.

    Article  CAS  Google Scholar 

  15. Rocha, K.O., Santos, J.B.O., Meira, D., Pizani, P.S., Marques, C.M.P., Zanchet, D., and Bueno, J.M.C., Appl. Catal. A: General, 2012, vol. 431, p. 79.

    Article  Google Scholar 

  16. Rovira, L.G., Sanchez-Amaya, J.M., Lopez-Haro, M., Hungria, A.B., Boukha, Z., Bernal, S., and Botana, F.J., Nanotechnology, 2008, vol. 19, p. 495305.

    Article  Google Scholar 

  17. Zheng, D., Shi, J., Lu, X., and Wang, C, Cryst. Engin. Commun., 2010, vol. 10, p. 4066.

    Article  Google Scholar 

  18. Tang, B., Ge, J., Wu, C., Zhuo, L., Niu, J., Chen, Z., Shi, Z., and Dong, Y., Nanotechnology, 2004, vol. 15, p. 1273.

    Article  CAS  Google Scholar 

  19. Zhu, J., Gui, Z., and Ding, Y., Mater. Lett., 2008, vol. 62, p. 2373.

    Article  CAS  Google Scholar 

  20. Deng, J., Zhang, L., Au, C.T., and Dai, H., Mater. Lett., 2009, vol. 63, p. 632.

    Article  CAS  Google Scholar 

  21. Qian, L., Gui, Y., Guo, S., Gong, Q., and Qian, X., J. Phys. Chem. Solids, 2009, vol. 70, p. 688.

    Article  CAS  Google Scholar 

  22. Ma, X., Zhang, H., Xu, J., and Yang, D., Mater. Lett., 2004, vol. 58, p. 1180.

    Article  CAS  Google Scholar 

  23. Mu, Q. and Wang, Y., J. Alloys Compd., 2011, vol. 509, p. 396.

    Article  CAS  Google Scholar 

  24. Xie, J., Wu, Q., Zhang, D., and Ding, Y., Cryst. Growth Design, 2009, vol. 9, p. 3889.

    Article  CAS  Google Scholar 

  25. Wu, Y., Chen, Y., and Zhou, J., Mater. Lett., 2013, vol. 95, p. 5.

    Article  CAS  Google Scholar 

  26. Khosrow-pour, F., Aghazadeh, M., Dalvand, S., and Sabour, B., Mater. Lett., 2013, vol. 104, pp. 61–63.

    Article  CAS  Google Scholar 

  27. Yao, C.Z., Weia, B.H., Ma, H.X., Gong, Q.J., Jing, K.W., Sun, H., and Meng, L.X., Mater. Lett., 2011, vol. 65, p. 490.

    Article  CAS  Google Scholar 

  28. Khosrow-pour, F., Aghazadeh, M., and Arhami, B., J. Electrochem. Soc., 2013, vol. 160, p. D150.

    Article  CAS  Google Scholar 

  29. Liu, Z., Zheng, D., Su, Y., Liu, Z., and Tong, Y., Electrochem. Solid-State Lett., 2010, vol. 13, p. E15.

    Article  CAS  Google Scholar 

  30. Bocchetta, P., Santamaria, M., and Quarto, F.D., Electrochem. Commun., 2007, vol. 9, p. 683.

    Article  CAS  Google Scholar 

  31. Aghazadeh, M., Nozad Golikand, A., Ghaemi, M., and Yousefi, T., Mater. Lett., 2011, vol. 65, p. 1466.

    Article  CAS  Google Scholar 

  32. Aghazadeh, M., Nozad Golikand, A., Ghaemi, M., and Yousefi, T., J. Electrochem. Soc., 2011, vol. 158, p. E136.

    Article  CAS  Google Scholar 

  33. Tang, B., Ge, J., and Zhuo, L., Nanotechnology, 2004, vol. 15, p. 1749.

    Article  CAS  Google Scholar 

  34. Hu, C., Liu, H., Dong, W., Zhang, Y., Bao, G., Lao, C., and Wang, Z.L., Adv. Mater., 2007, vol. 19, p. 470.

    Article  CAS  Google Scholar 

  35. Nieminen, M., Putkonen, M., and Niinisto, L., Appl. Sur. Sci., 2001, vol. 174, p. 155.

    Article  CAS  Google Scholar 

  36. Lamagna, L., Wiemer, C., Perego, M., Volkos, S.N., Baldovino, S., Tsoutsou, D., Schamm-Chardon, S., Coulon, P.E., and Fanciulli, M., J. Appl. Phys., 2010, vol. 108, p. 084108.

    Article  Google Scholar 

  37. Yang, C., Fan, H., Qiu, S., Xi, Y., and Fu, Y., J. Non-Crystalline Solids, 2009, vol. 355, p. 33.

    Article  CAS  Google Scholar 

  38. Sun, C., Xiao, G., Li, H., and Chen, L., J. American Ceram. Soc., 2007, vol. 90, p. 2576.

    Article  CAS  Google Scholar 

  39. Sheng, J., Zhang, S., Lv, S., and Sun, W., J. Mater. Sci., 2007, vol. 42, p. 9565.

    Article  CAS  Google Scholar 

  40. Masui, T. and Kato, Y., J. Solid State Chem., 2005, vol. 178, p. 395.

    Article  Google Scholar 

  41. Wang, X., Wang, M., Song, H., and Ding, B., Mater. Lett., 2006, vol. 60, p. 2261.

    Article  CAS  Google Scholar 

  42. Stoychev, D., Valov, I., Stefanov, P., Atanasova, G., Stoycheva, M., and Marinova, Ts., Mater. Sci. Engin. C, 2003, vol. 23, p. 123.

    Article  Google Scholar 

  43. Zhitomirsky, I. and Gal-Or, L., J. Mater. Sci., 1998, vol. 33, p. 699.

    Article  CAS  Google Scholar 

  44. Wang, Y., Yang, L., Wang, Y., Wang, X., and Wang, L., Ceram. Int., 2013 (in press).

    Google Scholar 

  45. Aghazadeh, M. and Hosseinifard, M., Ceram. Int., 2013, vol. 39, p. 4427.

    Article  CAS  Google Scholar 

  46. Aghazadeh, M., Malek Barmi, A.A., Mohammad Shiri, H., and Sedaghat, S., Ceram. Int., 2013, vol. 39, p. 1045.

    Article  CAS  Google Scholar 

  47. Jamali-Sheini, F. and Yousefi, R., Ceram. Int., 2013, vol. 39, p. 3715.

    Article  CAS  Google Scholar 

  48. Chen, C.Y., Wang, S.C., Lin, C.Y., Chen, F.S., and Lin, C.K., Ceram. Int., 2009, vol. 35, p. 3469.

    Article  CAS  Google Scholar 

  49. Xua, Y., Chen, Y., Wu, J., Li, D., Ju, H., and Zheng, J., Int. J. Hydrogen Energy, 2010, vol. 35, p. 6366.

    Article  Google Scholar 

  50. Zhou, W.J., Zhao, D.D., Xu, M.W., Xu, C.L., and Li, H.L., Electrochim. Acta, 2008, vol. 53, p. 7210.

    Article  CAS  Google Scholar 

  51. Aghazadeh, M., J. Electrochem. Soc., 2012, vol. 159, p. E53.

    Article  CAS  Google Scholar 

  52. Samata, H., Kimura, D., Saeki, Y., Nagata, Y., and Ozawa, T.C., J. Cryst. Growth, 2007, vol. 304, p. 448.

    Article  CAS  Google Scholar 

  53. Zhao, D. and Zhou, W., Chem. Mater., 2007, vol. 19, p. 3882.

    Article  CAS  Google Scholar 

  54. Zhitomirsky, I., Adv. Colloid Interface Sci., 2002, vol. 97, p. 279.

    Article  CAS  Google Scholar 

  55. Poudret, L., Prior, T., J. Mclntyre, L., and Fogg, A.M., Chem. Mater., 2008, vol. 20, p. 7447.

    Article  CAS  Google Scholar 

  56. McIntyre, L., Jackson, L., and Fogg, A.M., J. Phys. Chem. Solid, 2008, vol. 69, p. 1070.

    Article  CAS  Google Scholar 

  57. McIntyre, L., Jackson, L., and Fogg, A.M., Chem. Mater., 2008, vol. 20, p. 335.

    Article  CAS  Google Scholar 

  58. Ambrogi, V., Fardella, G., Grandolini G., and Perioli, L., Int. J. Pharm., 2001, vol. 220, p. 23.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isa Karimzadeh or Mustafa Aghazadeh.

Additional information

Published in Russian in Elektrokhimiya, 2015, Vol. 51, No. 3, pp. 308–316.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimzadeh, I., Aghazadeh, M., Safibonab, B. et al. Facile preparation of La(OH)3 and La2O3 nanorods aligned along the electrode surface: Pulsed cathodic deposition followed by heat-treatment. Russ J Electrochem 51, 263–270 (2015). https://doi.org/10.1134/S1023193515030076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515030076

Keywords

Navigation