Skip to main content
Log in

Role of ohmic losses in appearance of dynamic instabilities in model electrochemical system with cylindrical electrode under potentiostatic conditions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The impedance spectroscopy technique was used for theoretical studies of the conditions of appearance of Hopf instability and saddle-node instability in a model electrochemical system with a preceding homogeneous chemical reaction in the Nernst diffusion layer and electrocatalytic reaction on the surface of a cylindrical electrode under potentiostatic conditions. It is shown that the value of the ohmic resistance parameter in the system can affect the number of bifurcation points and bifurcation frequency. An increase in the ohmic resistance parameter results in the narrowing of the region of Hopf bifurcation giving rise to spontaneous periodical current oscillations and expansion of the region of saddle-node instability leading to bistability. There are threshold values of the ohmic resistance parameters critical for appearance and disappearance of the dynamic instabilities under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grafov, B.M. and Ukshe, E.A., Kinetika slozhnykh elektrokhimicheskikh reaktsii (Kinetics of Complex Electrochemical Reactions), Moscow: Nauka, 1981, pp. 7–49.

    Google Scholar 

  2. Stoinov, Z.B., Grafov, B.M., Savova-Stoinova, B., and Elkin, V.V., Elektrokhimicheskii impedans (Electrochemical Impedance), Moscow: Nauka, 1991.

    Google Scholar 

  3. Wolf, W., Lubke, M., Koper, M.T.M., Krischer, K., Eiswirth, M., and Ertl, G., J. Electroanal. Chem., 1995, vol. 399, p. 185.

    Article  Google Scholar 

  4. Strasser, P., Lubke, M., Raspel, F., Eiswirth, M., and Ertl, G., J. Chem. Phys., 1997, vol. 107, p. 979.

    Article  CAS  Google Scholar 

  5. Koper, M.T.M., Adv. Chem. Phys., 1996, vol. 92, p. 161.

    CAS  Google Scholar 

  6. Koper, M.T.M., J. Chem. Soc., Faraday Trans., 1998, vol. 94, p. 1369.

    Article  CAS  Google Scholar 

  7. Strasser, P., Eiswirth, M., and Koper, M.T.M., J. Electroanal. Chem., 1999, vol. 478, p. 50.

    Article  CAS  Google Scholar 

  8. Naito, M., Tanaka, N., and Okamoto, H., J. Chem. Phys., 1999, vol. 111, p. 9908.

    Article  CAS  Google Scholar 

  9. Malkhandi, S., Bauer, P.R., Bonnefont, A., and Krischer, K., Catal. Today, 2013, vol. 202, p. 144.

    Article  CAS  Google Scholar 

  10. Du, Z., Gao, Q., Feng, J., Lu, Y., and Wang, J., J. Phys. Chem. B, 2006, vol. 110, p. 26098.

    Article  CAS  Google Scholar 

  11. Malkhandi, S., Bonnefont, A., and Krischer, K., Electrochem. Commun., 2005, vol. 7, p. 710.

    Article  CAS  Google Scholar 

  12. Raspel, F. and Eiswirth, M., J. Phys. Chem., 1994, vol. 98, p. 7613.

    Article  CAS  Google Scholar 

  13. Raspel, F., Nichols, R.J., and Kolb, D.M., J. Electroanal. Chem., 1990, vol. 286, p. 279.

    Article  CAS  Google Scholar 

  14. Damaskin, B.B., Safonov, V.A., and Baturina, O.A., Russ. J. Electrochem., 1997, vol. 33, p. 105.

    CAS  Google Scholar 

  15. Damaskin, B.B. and Safonov, V.A., Russ. J. Electrochem., 2005, vol. 41, p. 253.

    Article  CAS  Google Scholar 

  16. Frumkin, A.N., Z. Phys. Chem., 1925, vol. 116, p. 466.

    CAS  Google Scholar 

  17. Koper, M.T.M. and Sluyters, J.H., J. Electroanal. Chem., 1994, vol. 371, p. 149.

    Article  CAS  Google Scholar 

  18. Berthier, F., Diard, J.-P., and Montella, C., Electrochim. Acta, 1999, vol. 44, p. 2397.

    Article  CAS  Google Scholar 

  19. Pototskaya, V.V., Gichan, O.I., Omelchuk, A.A., and Volkov, S.V., Russ. J. Electrochem., 2008, vol. 44, p. 594.

    Article  CAS  Google Scholar 

  20. Pototskaya, V.V., Gichan, O.I., and Omelchuk, A.A., Russ. J. Electrochem., 2010, vol. 46, p. 494.

    Article  CAS  Google Scholar 

  21. Pototskaya, V.V. and Gichan, O.I., Russ. J. Electrochem., 2011, vol. 47, p. 336.

    Article  CAS  Google Scholar 

  22. Pototskaya, V.V. and Gichan, O.I., Russ. J. Electrochem., 2012, vol. 48, p. 154.

    Article  CAS  Google Scholar 

  23. Gichan, O.I. and Pototskaya, V.V., Electrochim. Acta, 2013, vol. 112, p. 957.

    Article  CAS  Google Scholar 

  24. Wolfram, S., MathematicaTM, Redwood City: Addison Wesley, 1988.

    Google Scholar 

  25. Gokhshtein, A.Ya., Dokl. Akad. Nauk SSSR, 1961, vol. 140, p. 1114.

    CAS  Google Scholar 

  26. Takens, F., Comm. Math. Inst., 1974, vol. 2, p. 1.

    Google Scholar 

  27. Bogdanov, R., Sel. Math. Sov., 1981, vol. 1, p. 373.

    Google Scholar 

  28. Koper, M.T.M., Electrochim. Acta, 1992, vol. 37, p. 1771.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Pototskaya or O. I. Gichan.

Additional information

Original Russian Text © V.V. Pototskaya, O.I. Gichan, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 11, pp. 1123–1134.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pototskaya, V.V., Gichan, O.I. Role of ohmic losses in appearance of dynamic instabilities in model electrochemical system with cylindrical electrode under potentiostatic conditions. Russ J Electrochem 50, 1009–1019 (2014). https://doi.org/10.1134/S1023193514110081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514110081

Keywords

Navigation