Skip to main content
Log in

Magnetron formation of Ni/YSZ anodes of solid oxide fuel cells

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Physico-chemical and structural properties of nanocomposite NiO/ZrO2:Y2O3 (NiO/YSZ) films applied using the reactive magnetron deposition technique are studied for application as anodes of solid oxide fuel cells. The effect of oxygen consumption and magnetron power on the discharge parameters is determined to find the optimum conditions of reactive deposition. The conditions for deposition of NiO/YSZ films, under which the deposition rate is maximum (12 μm/h), are found and the volume content of Ni is within the range of 40–50%. Ni-YSZ films reduced in a hydrogen atmosphere at the temperature of 800°C have a nanoporous structure. However, massive nickel agglomerates are formed in the course of reduction on the film surface; their amount grows at an increase in Ni content in the film. Solid oxide fuel cells with YSZ supporting electrolyte and a LaSrMnO3 cathode are manufactured to study electrochemical properties of NiO/YSZ films. It is shown that fuel cells with a nanocomposite NiO/YSZ anode applied using a magnetron sputtering technique have the maximum power density twice higher than in the case of fuel cells with an anode formed using the high-temperature sintering technique owing to a more developed gas-anode-electrolyte three-phase boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams, M.C., Fuel Cells, 2001, vol. 1, p. 87.

    Article  CAS  Google Scholar 

  2. Bobrenok, O.F. and Predtechenskii, M.R., Russ. J. Electrochem., 2010, vol. 46, p. 798.

    Article  CAS  Google Scholar 

  3. Beckel, D., Bieberle-Hutter, A., Harvey, A., Infortuna, A., Muecke, U.P., Prestat, M., Rupp, J.L.M., and Gauckler, L.J., J. Power Sources, 2007, vol. 173, p. 325.

    Article  CAS  Google Scholar 

  4. Kim, Y.B., Park, J.S., Gur, T.M., and Prinz, F.B., J. Power Sources, 2011, vol. 196, p. 10550.

    Article  CAS  Google Scholar 

  5. Su, P.C., Chao, C.C., Shim, J.H., Fasching, R., and Prinz, F.B., Nano Lett., 2008, vol. 8, p. 2289.

    Article  CAS  Google Scholar 

  6. Sochugov, N.S., Soloviev, A.A., Shipilova, A.V., and Rotshtain, V.P., Int. J. Hydrogen Energy, 2011, vol. 36, no. 9, p. 5550.

    Article  CAS  Google Scholar 

  7. Costamagna, P., Costa, P., and Antonucci, V., Electrochim. Acta, 1998, vol. 43, p. 375.

    Article  CAS  Google Scholar 

  8. Muecke, U.P., Beckel, D., Bernard, A., Bieberle-Hutter, A., Graf, S., Infortuna, A., Muller, P., Rupp, J.L.M., Schneider, J., and Gauckler, L.J., Adv. Funct. Mater., 2008, vol. 18, p. 31.

    Article  Google Scholar 

  9. Muecke, U.P., Graf, S., Rhyner, U., and Gauckler, L.J., Acta Materialia, 2008, vol. 56, p. 677.

    Article  CAS  Google Scholar 

  10. Pratihar, S.K., Dassharma, A., and Maiti, H.S., J. Mater. Sci., 2007, vol. 42, p. 7220.

    Article  CAS  Google Scholar 

  11. Noh, H., Park, J., Son, J., Lee, H., Lee, J., and Lee, H., J. Am. Ceram. Soc., 2009, vol. 92, no. 12, p. 3064.

    Article  Google Scholar 

  12. Meng, B., Sun, Y., He, X.D., and Li, M.W., Mater. Sci. Technol., 2008, vol. 24, no. 8, p. 997.

    Article  CAS  Google Scholar 

  13. Jou, Sh. and Wu, Tz.-H., J. Phys. Chem. Solids, 2008, vol. 69, p. 2804.

    Article  CAS  Google Scholar 

  14. Rezugina, E., Thomann, A.L., Hidalgo, H., Brault, P., Dolique, V., and Tessier, Y., Surf. Coat. Technol., 2010, vol. 204, p. 2376.

    Article  CAS  Google Scholar 

  15. Movchan, B.A. and Lemkey, F.D., Surf. Coat. Technol, 2003, vol. 165, p. 90.

    Article  CAS  Google Scholar 

  16. La, O.G.J., Hertz, J., Tuller, H., and Shao-Horn, Y., J. Electroceramics, 2004, vol. 13, p. 691.

    Article  Google Scholar 

  17. Hertz, J.L. and Tuller, H.L., J. Electrochem. Soc., 2007, vol. 154, no. 4, p. 413.

    Article  Google Scholar 

  18. Hayashi, K., Yamamoto, O., Nishigaki, Y., and Ninoura, H., Denki Kagaku, 1996, vol. 64, no. 10, p. 1097.

    CAS  Google Scholar 

  19. Wang, L.S. and Barnett, S.A., Solid State Ionics, 1995, vol. 76, p. 103.

    Article  CAS  Google Scholar 

  20. Kukla, R., Surf. Coat. Technol., 1997, vol. 93, p. 1.

    Article  Google Scholar 

  21. Solov’ev, A.A., Sochugov, N.S., Ionov, I.V., Kirdyashkin, A.I., Kitler, V.D., Maznoi, A.S., Maksimov, Yu.M., and Sigfusson, T.I., Perspekt. Mater., 2013, no. 4, p. 31.

    Google Scholar 

  22. Solov’ev, A.A., Sochugov, N.S., Shipilova, A.V., Efimova, K.B., and Tumashevskaya, A.E., Russ. J. Electrochem., 2011, vol. 47, no. 4, p. 494.

    Article  Google Scholar 

  23. Hotovy, I., Huran, J., Spiess, L., Liday, J., Sitter, H., and Hascik, S., Vacuum, 2003, vol. 69, p. 237.

    Article  Google Scholar 

  24. Scardi, P., Polonioli, P., and Ferrari, S., Thin Solid Films, 1994, vol. 253, p. 349.

    Article  CAS  Google Scholar 

  25. Jou, S., Yeh, D.Y., and Tseng, A.A., J. Nanosci. Nanotechnol., 2008, vol. 8, p. 390.

    Article  CAS  Google Scholar 

  26. Klement, U., Erb, U., El-Sherik, A.M., and Aust, K.T., Mater. Sci. Eng., A, 1995, vol. 203, p. 177.

    Article  Google Scholar 

  27. Knauth, P., Charai, A., and Gas, P., Scr. Metall. Mater., 1993, vol. 28, p. 325.

    Article  CAS  Google Scholar 

  28. Holzera, L., Iwanschitz, B., Hocker, Th., Munch, B., Prestat, M., Wiedenmann, D., Vogt, U., Holtappels, P., Sfeir, J., Mai, A., and Graule, Th., J. Power Sources, 2011, vol. 196, p. 1279.

    Article  Google Scholar 

  29. Gubner, A., Landes, H., Metzger, J., Seeg, H., and Stübner, R., Proc. 192nd Meeting of the Electrochemical Society, ECS, Paris, 1997, p. 844.

    Google Scholar 

  30. Vassen, R., Simwonis, D., and Stover, D., J. Mater. Sci., 2001, vol. 36, p. 147.

    Article  CAS  Google Scholar 

  31. Noh, H.S., Son, J.W., Lee, H., Ji, H.I., Lee, J.H., and Lee, H.W., J. Eur. Ceram. Soc., 2010, vol. 30, p. 3415.

    Article  CAS  Google Scholar 

  32. Jiang, S., J. Power Sources, 2008, vol. 183, no. 2, p. 595.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Solov’ev.

Additional information

Original Russian Text © A.A. Solov’ev, N.S. Sochugov, I.V. Ionov, A.V. Shipilova, A.N. Koval’chuk, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 7, pp. 724–732.

This publication was prepared based on a lecture delivered at the All-Russian Conference with international participation “Fuel Cells and Power Plants,” Chernogolovka, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solov’ev, A.A., Sochugov, N.S., Ionov, I.V. et al. Magnetron formation of Ni/YSZ anodes of solid oxide fuel cells. Russ J Electrochem 50, 647–655 (2014). https://doi.org/10.1134/S1023193514070155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514070155

Keywords

Navigation