Skip to main content
Log in

Association polymorphic variants of GRIN2B gene with paranoid schizophrenia and response to typical neuroleptics in Russians and Tatars from Bashkortostan Republic

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

An analysis of the association of paranoid schizophrenia seeking with polymorphic variants of GRIN2B was performed in order to identify genetic risk factors of disease development and genetic markers of the response to therapy by neuroleptics in Russian and Tatar patients from Bashkortostan Republic (BR). In the course of the analysis, we revealed the following: (1) genetic markers of increased risk of developing paranoid schizophrenia in various ethnic groups, including, in Tatars, the GRIN2B*T/*T genotype (p = 0.003; OR = 2.33) and GRIN2B*T allele (p = 0.001; OR = 2.36), rs1805247; in Russians, the GRIN2B*T/*T genotype (p = 0.038; OR = 2.12) and GRIN2B*T allele (p = 0.028; OR = 2.03), rs1805247, genotype GRIN2B*A/*A (p = 0.042; OR = 2.12), rs1805476; (2) genetic markers of the reduced risk of developing paranoid schizophrenia; (3) genetic markers of therapy response and the risk of side effects development during neuroleptics (haloperidol) treatment in Bashkortostan. The significant interethnic diversity of genetic factors related to the risk of this disease development was noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mosolov, S.N., Some modern theoretical problems of schizophrenia diagnostics, classification, neurobiology, and therapy: Comparison of foreign and domestic approaches, Zh. Nevropatol. Psikhiatr. im. S.S. Korsakova, 2010, no. 6, pp. 4–11.

    Google Scholar 

  2. Tiganov, A.S., Snezhnevskii, A.V., and Orlovskaya, D.D., Rukovodstvo po psikhiatrii (Guide to Psychiatry), Moscow: Meditsina, 1999, vol. 1.

    Google Scholar 

  3. Gottesman, H. and Gould, T., The endophenotype concept in psychiatry: etymology and strategic intentions, Am. J. Psychiatry, 2003, vol. 160, no. 4, pp. 636–645.

    Article  PubMed  Google Scholar 

  4. Gupta, M., Bhatnagar, P., Grover, S., et al., Association studies of catechol-O-methyltransferase (COMT) gene with schizophrenia and response to antipsychotic treatment, Pharmacogenomics, 2009, vol. 10, no. 3, pp. 385–397.

    Article  PubMed  CAS  Google Scholar 

  5. Saetre, P., Agartz, I., De Franciscis, A., et al., Association between a disrupted-in-schizophrenia 1 (DISC1) single nucleotide polymorphism and schizophrenia in a combined Scandinavian case-control sample, Schizophr. Res., 2008, vol. 106, no. 2, pp. 237–241.

    Article  PubMed  Google Scholar 

  6. Schumacher, J., Laje, G., Abou Jamra, R., et al., The DISC1 locus and schizophrenia: evidence from an association study in a central European sample and from a meta-analysis across different European populations, Hum. Mol. Genet., 2009, vol. 18, no. 4, pp. 2719–2727.

    Article  PubMed  CAS  Google Scholar 

  7. Athanasiu, L., Mattingsdal, M., Melle, I., et al., Intron 12 in NTRK3 is associated with bipolar disorder, Psychiatry Res., 2011, vol. 185, no. 3, pp. 358–362.

    Article  PubMed  CAS  Google Scholar 

  8. Liu, Z.W., Liu, J.L., An, Y., et al., Association between Ser311Cys polymorphism in the dopamine D2 receptor gene and schizophrenia risk: a meta-analysis in Asian populations, Genet. Mol. Res., 2012, vol. 11, no. 1, pp. 261–270.

    Article  PubMed  Google Scholar 

  9. Otnaess, M.K., Djurovic, S., Rimol, L.M., et al., Evidence for a possible association of neurotrophin receptor (NTRK-3) gene polymorphisms with hippocampal function and schizophrenia, Neurobiol. Dis., 2009, vol. 34, no. 3, pp. 518–524.

    Article  PubMed  CAS  Google Scholar 

  10. Carlsson, M.L., Carlsson, A., and Nilsson, M., Schizophrenia: from dopamine to glutamate and back, Curr. Med. Chem., 2004, vol. 11, no. 3, pp. 267–277.

    Article  PubMed  CAS  Google Scholar 

  11. Coyle, J.T., Glutamate and schizophrenia: beyond the dopamine hypothesis, Cell. Mol. Neurobiol., 2006, vol. 26, no. 4, pp. 365–384.

    PubMed  CAS  Google Scholar 

  12. Javitt, D.C., Glutamatergic theories of schizophrenia, Isr. J. Psychiatry Relat. Sci., 2010, vol. 47, no. 1, pp. 4–16.

    PubMed  Google Scholar 

  13. Ohtsuki, T., Sakurai, K., Dou, H., et al. Mutation analysis of the NMDAR2B (GRIN2B) gene in schizophrenia, Mol. Psychiatry, 2001, vol. 6, no. 2, pp. 211–216.

    Article  PubMed  CAS  Google Scholar 

  14. Mathew, C.C., The isolation of high molecular weight eukaryotic DNA, Methods in Molecular Biology, Walker, J.M., Ed., New York: Haman Press, 1984, vol. 2, pp. 31–34.

    Google Scholar 

  15. Bakker, P.R., van Harten, P.N., and van Os, J., Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions, Mol. Psychiatry, 2008, vol. 13, no. 5, pp. 544–556.

    Article  PubMed  CAS  Google Scholar 

  16. Zai, C.C., Hwang, R.W., and De Luca, V., Association study of tardive dyskinesia and twelve DRD2 polymorphisms in schizophrenia patients, Int. J. Neuropsychopharmacol., 2007, vol. 10, no. 5, pp. 639–651.

    Article  PubMed  CAS  Google Scholar 

  17. STATISTICA for Windows (Data Analysis Software System), Version 6.0, Tulsa: StatSoft, 2001.

  18. Barrett, J.C., Fry, B., Maller, J., and Daly, M.J., Haploview: analysis and visualization of LD and haplotype maps, Bioinformatics, 2005, vol. 21, no. 2, pp. 263–265.

    Article  PubMed  CAS  Google Scholar 

  19. Giegling, I., Drago, A., Dolan, V., et al., Glutamatergic gene variants impact the clinical profile of efficacy and side effects of haloperidol, Pharmacogenet. Genomics, 2011, vol. 21, no. 4, pp. 206–216.

    PubMed  CAS  Google Scholar 

  20. Chiu, H.J., Wang, Y.C., Liou, Y.J., et al., Association analysis of the genetic variants of the N-methyl D-aspartate receptor subunit 2b (NR2b) and treatment-refractory schizophrenia in the Chinese, Neuropsychobiology, 2003, vol. 47, no. 4, pp. 178–181.

    Article  PubMed  Google Scholar 

  21. Martucci, L., Wong, A.H., De Luca, V., et al., N-methyl-D-aspartate receptor NR2B subunit gene GRIN2B in schizophrenia and bipolar disorder: Polymorphisms and mRNA levels, Schizophr. Res., 2006, vol. 84, no. 2, pp. 214–221.

    Article  PubMed  Google Scholar 

  22. Li, D. and He, L., Association study between the NMDA receptor 2B subunit gene (GRIN2B) and schizophrenia: a HuGE review and meta-analysis, Genet. Med., 2007, vol. 9, no. 1, pp. 4–8.

    Article  PubMed  CAS  Google Scholar 

  23. Müller, D.J., De Luca, V., Sicard, T., et al., Suggestive association between the C825T polymorphism of the G-protein beta3 subunit gene (GNB3) and clinical improvement with antipsychotics in schizophrenia, Eur. Neuropsychopharmacol., 2005, vol. 15, no. 5, pp. 525–531.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Gareeva.

Additional information

Original Russian Text © A.E. Gareeva, D.F. Zakirov, E.K. Khusnutdinova, 2013, published in Genetika, 2013, Vol. 49, No. 9, pp. 1106–1113.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gareeva, A.E., Zakirov, D.F. & Khusnutdinova, E.K. Association polymorphic variants of GRIN2B gene with paranoid schizophrenia and response to typical neuroleptics in Russians and Tatars from Bashkortostan Republic. Russ J Genet 49, 962–968 (2013). https://doi.org/10.1134/S1022795413080024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795413080024

Keywords

Navigation