Skip to main content
Log in

Factor analysis of interactions between alfalfa nodule bacteria (Sinorhizobium meliloti) genes that regulate symbiotic nitrogen fixation

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Factor analysis has been conducted for the data on the interaction between the genes of the root nodule bacteria (rhizobia), which influence the efficiency of symbiosis with leguminous plants, including dctA (encoding succinate permease), dctBD (activating the dctA gene due to binding its enhancer in the presence of succinate), rpoN (activating the promoters of dctA and nitrogenase genes nifHDK), and nifA (activating the nitrogenase genes due to binding their enhancers). The analysis of the alfalfa rhizobia (Sinorhizobium meliloti) recombinants that contain additional copies of these genes suggested the antagonistic (epistatic) interaction between nifA and rpoN. It may be associated either with the competition for C compounds imported into the nodules between the energy production and nitrogen assimilation processes or with the competition for redox potentials between the oxidative phosphorylation and nitrogen fixation processes. Since the phenotypic effects of the studied genes depend on the activity of nitrogen export into the aerial parts of plants, we suppose that its accumulation in bacteroids impairs the activation of the nifHDK genes by the NifA protein due to its interaction with the GlnB protein (the nitrogen metabolism regulator) or with the FixLJ and ActSR proteins (the redox potential regulators).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franche, C., Lindstrom, K., and Elmerich, C., Nitrogen-Fixing Bacteria Associated with Leguminous and Non-Leguminous Plants, Plant Soil, 2009, vol. 321, pp. 35–59.

    Article  CAS  Google Scholar 

  2. Kretovich, V.L., Biokhimiya usvoeniya azota vozdukha rasteniyami (Biochemistry of the Airborne Nitrogen Assimilation by Plants), Moscow: Nauka, 1994.

    Google Scholar 

  3. Shtark, O.Y., Borisov, A.Y., Zhukov, V.A., et al., Intimate Associations of Beneficial Soil Microbes with Host Plants, Soil Microbiology and Sustainable Crop Production, Dixon, R. and Tilston, E., Eds., Berlin: Springer-Verlag, 2010, pp. 119–196.

    Chapter  Google Scholar 

  4. Fisher, H.M., Genetic Regulation of Nitrogen Fixation in Rhizobia, Microbiol. Rev., 1994, vol. 58, no. 3, pp. 352–386.

    Google Scholar 

  5. Kaminski, P., Batut, Zh., and Boistard, P., Control of Symbiotic Nitrogen Fixation in Rhizobia, Rhizobiaceae: Molekulyarnaya biologiya bakterii, vzaimodeistvuyushchikh s rasteniyami (Rhizobiaceae. Molecular Biology of Model Plant-Associated Bacteria), Spaink, G., Kondoroshi, A., and Khukas, P., Eds., St. Petersburg: Biont, 2002, pp. 465–492.

    Google Scholar 

  6. Bobik, C., Meilhoc, E., and Batut, J., FixJ: A Major Regulator of the Oxygen Limitation Response and Late Symbiotic Functions of Sinorhizobium meliloti, J. Bacteriol., 2006, vol. 188, pp. 4890–4902.

    Article  PubMed  CAS  Google Scholar 

  7. Elsen, S., Swem, L.R., Swem, D.L., and Bauer, C.E., RegB/RegA, a Highly Conserved Redox-Responding Global Two-Component Regulatory System, Microbiol. Mol. Biol. Rev., 2004, vol. 68, no. 2, pp. 263–279.

    Article  PubMed  CAS  Google Scholar 

  8. Arsene, F., Kaminski, P.A., and Elmerich, C., Modulation of NifA Activity by PII in Azospirillum brasilense: Evidence for a Regulatory Role of the NifA N-Terminal Domain, J. Bacteriol., 1996, vol. 178, no. 16, pp. 4830–4838.

    PubMed  CAS  Google Scholar 

  9. Jording, D., Uhde, C., Schmidt, R., and Phler, A., The C4-Dicarboxylate Transport System of Rhizobium meliloti and Its Role in Nitrogen Fixation during Symbiosis with Alfalfa (Medicago sativa), Experientia, 1994, vol. 5, pp. 874–883.

    Article  Google Scholar 

  10. Onishchuk, O.P., Vorob’ev, N.I., Provorov, N.A., and Simarov, B.V., Symbiotic Activity of Alfalfa Rhizobia (Sinorhizobium meliloti) Strains with Genetically Modified Transport of Dicarboxylic Acids, Ekol. Genet., 2009, vol. 7, no. 2, pp. 3–10.

    Google Scholar 

  11. Kulaichev, A.P., Metody i sredstva kompleksnogo analiza dannykh (Methods and Facilities of the Complex Data Analysis), Moscow: FORUM—INFRA-M, 2006.

    Google Scholar 

  12. Mironov, A.A., Vinokurova, N.P., and Gelfand, M.S., Software for Analysis of Bacterial Genomes, Mol. Biol., 2000, vol. 34, no. 2, pp. 222–231.

    Article  CAS  Google Scholar 

  13. Jalovaja (Chuklina), J., Tsoy, O., and Gelfand, M., Comparative-Genomic Reconstruction of the NifA Regulon Evolution in Alphaproteobacteria, Abstracts of Papers, 17th International Nitrogen Fixation Congress, Fremanle, 2011, p. 32.

    Google Scholar 

  14. Drepper, T., Role of GlnB and GlnK in Ammonium Control of Both Nitrogenase Systems in the Phototrophic Bacterium Rhodobacter capsulatus, Microbiology, 2003, vol. 149, no. 8, pp. 2203–2212.

    Article  PubMed  CAS  Google Scholar 

  15. Romanov, V.I., Chetkova, S.A., Tikhonovich, I.A., et al., Nitrogen Fixation in Chlorophyllic Pea Mutants, Dokl. Akad. Nauk SSSR, 1987, vol. 294, no. 5, pp. 1277–1280.

    CAS  Google Scholar 

  16. Dombrecht, B., Marchal, K., Vanderleyden, J., and Michiels, J., Prediction and Overview of the RpoN-Regulon in Closely Related Species of the Rhizobiales, Genome Biol., 2002, vol. 3, no. 12, pp. 1–11.

    Article  Google Scholar 

  17. Dixon, R., Austin, S., Eydmann, T., et al., Regulation of Nitrogen Fixation Genes by the NIFA and NIFL Regulatory Proteins, Biological Nitrogen Fixation for Ecology and Sustainable Agriculture, Legocki, A., Bothe, G., and Puhler, A., Eds., NATO ASI Ser., 1997, vol. G29, pp. 245–249.

    Google Scholar 

  18. Prell, J. and Poole, P., Metabolic Changes of Rhizobia in Legume Nodules, Trends Microbiol., 2006, vol. 14, no. 4, pp. 161–168.

    Article  PubMed  CAS  Google Scholar 

  19. de Bruijn, F., Chen, R., Fujimoto, S.Y., et al., Regulation of Nodulin Gene Expression, Plant Soil, 1994, vol. 161, pp. 59–68.

    Article  Google Scholar 

  20. Pini, F., Galardini, M., Bazzicalupo, M., and Mengoni, A., Plant-Bacteria Association and Symbiosis: Are There Common Genomic Traits in Alphaproteobacteria?, Genes, 2011, vol. 2, pp. 1017–1032.

    Article  CAS  Google Scholar 

  21. Masson-Boivin, C., Giraud, E., Perret, X., and Batut, J., Establishing Nitrogen-Fixing Symbiosis with Legumes: How Many Rhizobium Species?, Trends Microbiol., 2009, vol. 17, no. 1, pp. 458–466.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Provorov.

Additional information

Original Russian Text © N.A. Provorov, J. Chuklina, N.I. Vorobyov, O.P. Onishchuk, B.V. Simarov, 2013, published in Genetika, 2013, Vol. 49, No. 4, pp. 448–453.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provorov, N.A., Chuklina, J., Vorobyov, N.I. et al. Factor analysis of interactions between alfalfa nodule bacteria (Sinorhizobium meliloti) genes that regulate symbiotic nitrogen fixation. Russ J Genet 49, 388–393 (2013). https://doi.org/10.1134/S1022795413030150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795413030150

Keywords

Navigation