Skip to main content
Log in

Origin, evolution, and migration of drug resistance genes

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Current views on the mechanisms responsible for the emergence of multiple drug resistance in clinical bacterial isolates are considered. Hypotheses on the origin of resistance genes derived from determinants of actinomycetes, antibiotic-producing strains, and chromosomal genes of bacteria involved in cellular metabolism are reviewed. The mechanisms underlying the diffusion of resistance determinants by means of bacterial mobile elements (plasmids, transposons, and integrons) are discussed. Examples of the horizontal transfer of resistance determinants between Gram-positive and Gram-negative bacteria are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hughes, V.M. and Datta, N., Conjugative Plasmids in Bacteria of the “Preantibiotic Era”, Nature, 1983, vol. 302, pp. 725–726.

    Article  PubMed  CAS  Google Scholar 

  2. Houndt, T. and Ochman, H., Long-Term Shifts in Patterns of Antibiotic Resistance in Enteric Bacteria, Appl. Environ. Microbiol., 2000, vol. 66, pp. 5406–5409.

    Article  PubMed  CAS  Google Scholar 

  3. Mazel, D., Dychinco, B., Webb, V.A., and Davies, J., Antibiotic Resistance in the ECOR Collection: Integrons and Identification of a Novel aad Gene, Antimicrob. Agents Chemother., 2000, vol. 44, pp. 1568–1574.

    Article  PubMed  CAS  Google Scholar 

  4. Miller, G.H., Sabatelli, F.J., Hare, R.S., and Waitz, J.A., Survey of Aminoglycoside Resistance Patterns, Dev. Ind. Microbiol., 1980, vol. 21, pp. 91–104.

    CAS  Google Scholar 

  5. Price, K.E., Kresel, P.A., Farchione, L.A., et al., Epidemiological Studies of Aminoglycoside Resistance in the USA, J. Antimicrob. Chemother., 1981, vol. 8(Suppl. A), pp. 89–105.

    PubMed  Google Scholar 

  6. Shimizu, K., Kumada, T., Hsieh, W.-C., et al., Comparison of Aminoglycoside Resistance Patterns in Japan, Formosa, and Korea, Chile, and the United States, Antimicrob. Agents Chemother., 1985, vol. 28, pp. 282–288.

    PubMed  CAS  Google Scholar 

  7. Shaw, K.J., Hare, R.S., Sabatelli, F.J., et al., Correlation between Aminoglycoside Resistance Profiles and DNA Hybridization of Clinical Isolates, Antimicrob. AGents Chemother., 1991, vol. 35, pp. 2253–2261.

    PubMed  CAS  Google Scholar 

  8. Davies, J., Inactivation of Antibiotics and the Dissemination of Resistance Genes, Science, 1994, vol. 264, pp. 375–382.

    Article  PubMed  CAS  Google Scholar 

  9. Hayes, J.D. and Wolf, C.R., Molecular Mechanisms of Drug Resistance, Biochem. J., 1990, vol. 272, pp. 281–295.

    PubMed  CAS  Google Scholar 

  10. Roberts, M.C., Sutcliffe, J., Courvalin, P., et al., Nomenclature for Macrolide and Macrolide-Lincosamide-Streptogramin B Resistance Determinants, Antimicrob. Agents Chemother., 1999, vol. 43, pp. 2823–2830.

    PubMed  CAS  Google Scholar 

  11. Chopra, I. and Roberts, M.C., Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance, Microbiol. Mol. Biol. Rev., 2001, vol. 65, no. 2, pp. 232–260.

    Article  PubMed  CAS  Google Scholar 

  12. Nikaido, H., Multidrug Efflux Pumps of Gram-Negative Bacteria, J. Bacteriol., 1996, vol. 178, pp. 5853–5859.

    PubMed  CAS  Google Scholar 

  13. Yoshimura, F. and Nikaido, H., Permeability of Pseudomonas aeruginosa Outer Membrane to Hydrophilic Solutes, J. Bacteriol., 1982, vol. 152, pp. 636–642.

    PubMed  CAS  Google Scholar 

  14. Mingeot-Leclercq, M.-P., Glupczynski, Y., and Tulkens, P.M., Aminoglycosides: Activity and Resistance, Antimicrob. Agents Chemother., 1999, vol. 43, pp. 727–737.

    PubMed  CAS  Google Scholar 

  15. Shaw, K.J., Rather, P.R., Hare, R.S., and Miller, G.H., Molecular Genetics of Aminoglycoside Resistance Genes and Familial Relationships of the Aminoglycoside-Modifying Enzymes, Microbiol. Rev., 1993, vol. 57, pp. 138–163.

    PubMed  CAS  Google Scholar 

  16. Werner, G., Hilderbrandt, B., and Witte, W., Aminoglycoside-Streptothricin Resistance Gene Cluster aadE-sat4-aphA-3 Disseminated among Multiresistant Isolates of Enterococcus faecium, Antimicrob. Agents Chemother., 2001, vol. 45, pp. 3267–3269.

    Article  PubMed  CAS  Google Scholar 

  17. Nandi, S., Maurer, J.J., Hofacre, C., and Summers, A.O., Gram-Positive Bacteria Are a Major Reservoir of Class 1 Antibiotic Resistance Integrons in Poultry Litter, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 18, pp. 7118–7122.

    Article  PubMed  CAS  Google Scholar 

  18. Benveniste, R. and Davies, J., Aminoglycoside Antibiotic-Inactivation Enzymes in Actinimycetes Similar to Those Present in Clinical Isolates of Antibiotic-Resistance Bacteria, Proc. Natl. Acad. Sci. USA, 1973, vol. 70, pp. 2276–2280.

    Article  PubMed  CAS  Google Scholar 

  19. Davies, J. and Smith, D.I., Plasmid-Determined Resistance to Antimicrobial Agents, Annu. Rev. Microbiol., 1978, vol. 32, pp. 469–518.

    Article  PubMed  CAS  Google Scholar 

  20. Foster, T.J., Plasmid Determined Resistance to Antimicrobial Drugs and Toxic Metal Ions in Bacteria, Microbiol. Rev., 1983, vol. 47, pp. 361–409.

    PubMed  CAS  Google Scholar 

  21. Bibb, M.J., Bibb, M.J., Ward, J.M., and Cohen, S.N., Nucleotide Sequences Encoding and Promoting Expression of Three Antibiotic Resistance Genes Indigenous to Streptomyces, Mol. Gen. Genet., 1985, vol. 199, pp. 26–36.

    Article  PubMed  CAS  Google Scholar 

  22. Zalacain, M., Gonzalez, A., Guerrero, M.C., et al., Nucleotide Sequence of the Hygromycin B Phosphotransferase Gene from Streptomyces hygroscopicus, Nucleic Acids Res., 1986, vol. 14, no. 4, pp. 1565–1581.

    PubMed  CAS  Google Scholar 

  23. Jenkins, G. and Cundliffe, E., Cloning and Characterization of Two Genes from Streptomyces lividans that Confer Inducible Resistance to Lincomycin and Macrolide Antibiotics, Gene, 1991, vol. 108, pp. 55–62.

    Article  PubMed  CAS  Google Scholar 

  24. Thompson, C.J., Ward J.M., and Hopwood D.A., DNA Cloning in Streptomyces: Resistance Genes from Antibiotic-Producing Species, Nature, 1980, vol. 286, pp. 525–527.

    Article  PubMed  CAS  Google Scholar 

  25. Olano, C., Rodriguez, A.M., Mendez, C., and Salas, J.A., A Second ABC Transporter Is Involved in Oleandomycin Resistance and Its Secretion by Streptomyces antibioticus, Mol. Microbiol., 1995, vol. 16, pp. 333–343.

    Article  PubMed  CAS  Google Scholar 

  26. Lopez-Cabrera, M., Perez-Gonzalez, J.A., Heinzel, P., et al., Isolation and Nucleotide Sequencing of an Aminocyclitol Acetyltransferase Gene from Streptomyces rimosus Forma Paromomycinus, J. Bacteriol., 1989, vol. 171, pp. 321–328.

    PubMed  CAS  Google Scholar 

  27. Heinzel, P., Werbitzky, O., Distler, J., and Piepersberg, W., A Second Streptomycin Resistance Gene from Streptomyces griseus Codes for Streptomycin-3′-Phosphotransferase. Relationships between Antibiotic and Protein Kinases, Arch. Microbiol., 1988, vol. 150, pp. 184–192.

    Article  PubMed  CAS  Google Scholar 

  28. Vögtli, M. and Hütter, R., Characterization of the Hydroxystreptomycin Phosphotransferase Gene (sph) of Streptomyces glaucescens: Nucleotide Sequencing and Promoter Analysis, Mol. Gen. Genet., 1987, vol. 208, pp. 195–203.

    Article  PubMed  Google Scholar 

  29. Horinouchi, S., Furuya, K., Nishiyama, M., et al., Nucleotide Sequence of the Streptothricin Acetyltransferase Gene from Streptomyces lavendulae and Its Expression in Heterologous Hosts, J. Bacteriol., 1987, vol. 169, pp. 1929–1937.

    PubMed  CAS  Google Scholar 

  30. Pang, Y., Brown, B.A., Steingrube, V.A., et al., Tetracycline Resistance Determinants in Mycobacterium and Streptomyces Species, Antimicrob. Agents Chemother., 1994, vol. 38, pp. 1408–1412.

    PubMed  CAS  Google Scholar 

  31. Zalacain, M. and Cundliffe, E., Cloning of tlrD, a Fourth Resistance Gene, from the Tylosin Producer, Streptomyces fradiae, Gene, 1991, vol. 97, pp. 137–142.

    CAS  Google Scholar 

  32. Mosher, R.H., Camp, D.J., Yang, K., et al., Inactivation of Chloramphenicol by O-Phosphorylation. A Novel Resistance Mechanism in Streptomyces venezuelae ISP5230, a Chloramphenicol Producer, J. Biol. Chem., 1995, vol. 270, no. 45, pp. 27000–27006.

    Article  PubMed  CAS  Google Scholar 

  33. Uchiyama, H. and Weisblum, B., N-Methyl Transferase of Streptomyces erythraeus that Confers Resistance to the Macrolide-Lincosamide-Streptogramin B Antibiotics: Amino Acid Sequence and Its Homology to Cognate R-Factor Enzymes from Pathogenic Bacilli and Cocci, Gene, 1985, vol. 38, pp. 103–110.

    Article  PubMed  CAS  Google Scholar 

  34. Gray, S.G. and Fitch, W.M., Evolution of Antibiotic Resistance Genes: The DNA Sequences of a Kanamycin Resistance Gene from Staphylococcus aureus, Mol. Biol. Evol., 1983, vol. 1, pp. 57–66.

    PubMed  CAS  Google Scholar 

  35. Herbert, C.J., Sarwar, M., Ner, S.S., et al., Sequence and Iterspecies Transfer of an Aminoglycoside Phosphotransferase Gene (APH) of Bacillus circulans, Biochem. J., 1986, vol. 233, pp. 383–393.

    PubMed  CAS  Google Scholar 

  36. Allmansberger, R., Brau, B., and Piepersberg, W., Genes for Gentamicin-(3)-N-Acetyltransferase III and IV. II. Nucleotide Sequences of Three AAC(3)-III Genes and Evolutionary Aspects, Mol. Gen. Genet., 1985, vol. 198, pp. 514–520.

    Article  PubMed  CAS  Google Scholar 

  37. Salauze, D., Perez-Gonzalez, J.A., Piepersberg, W., and Davies, J., Characterization of Aminoclycoside Acetyltransferase-Encoding Genes of Neomycin-Producing Micromonospora chalcea and Streptomyces fradiae, Gene, 1991, vol. 101, pp. 143–148.

    Article  PubMed  CAS  Google Scholar 

  38. Thompson, C.J. and Gray, G.S., Nucleotide Sequence of a Streptomycete Aminoglycoside Phosphotransferase Gene and Its Relationship to Phosphotransferase Encoded by Resistance Plasmids, Proc. Natl. Acad. Sci. USA, 1983, vol. 80, pp. 5190–5194.

    Article  PubMed  CAS  Google Scholar 

  39. Novick, R.P. and Murphy, E., MLS-Resistance Determinants in Staphylococcus aureus and Their Molecular Evolution, J. Antimicrob. Chemother., 1985, vol. 16,suppl. A, pp. 101–110.

    PubMed  CAS  Google Scholar 

  40. Trieu-Cuot, P. and Courvalin, P., Evolution and Transfer of Aminoglycoside Resistance Genes under Natural Conditions, J. Antimicrob. Chemother., 1986, vol. 18Suppl. C, pp. 92–102.

    Google Scholar 

  41. Shaw, K.J., Rather, P.N., Sabatelli, F.J., et al., Characterization of the Chromosomal aac(6′)-Ic Gene from Serratia marcescens, Antimicrob. Agents Chemother., 1992, vol. 36, pp. 1447–1455.

    PubMed  CAS  Google Scholar 

  42. Brisson-Noel, A., Arthur, M., and Courvalin, P., Evidence for Natural Gene Transfer from Gram-Positive Cocci to Escherichia coli, J. Bacteriol., 1988, vol. 170, pp. 1739–1745.

    PubMed  CAS  Google Scholar 

  43. Lambert, T., Gerbaud, G., Trieu-Cuot, P., and Courvalin, P., Structural Relationship between the Genes Encoding 3′-Aminoglycoside Phosphotransferases in Campylobacter and in Gram-Positive Cocci, Ann. Inst. Pasteur Microbiol., 1985, vol. 136B, no. 2, pp. 135–150.

    Article  PubMed  CAS  Google Scholar 

  44. Burdett, V., Inamine, J., and Rajagopalan, S., Heterogeneity of Tetracycline Resistance Determinants in Streptococcus, J. Bacteriol., 1982, vol. 149, pp. 995–1004.

    PubMed  CAS  Google Scholar 

  45. Morse, S.A., Johnson, S.R., Biddle, J.W., and Roberts, M.C., High-Level Tetracycline Resistance in Neisseria gonorrhoeae Is Result of Acquisition of Streptococcal tetM Determinant, Antimicrob. Agents Chemother., 1986, vol. 30, pp. 664–670.

    PubMed  CAS  Google Scholar 

  46. Roberts, M.C., Hiller, S.L., Hale, J., et al., Tetracycline Resistance and tetM in Pathogenic Urogenital Bacteria, Antimicrob. Agents Chemother., 1986, vol. 30, pp. 810–812.

    PubMed  CAS  Google Scholar 

  47. Courvalin, P. and Carlier, C., Tn1545: A Conjugative Shuttle Transposon, Mol. Gen. Genet., 1987, vol. 206, pp. 259–264.

    Article  PubMed  CAS  Google Scholar 

  48. Kallova J., Macickova T., Majtanova A., et al., Transferable Amikacin Resistance in Gram-Negative Bacterial Isolates, Chemotherapy, 1995, vol. 41, pp. 187–192.

    PubMed  CAS  Google Scholar 

  49. Jacob, J., Evers, S., Bischoff, K., et al., Characterization of the sat4 Gene Encoding a Streptothricin Acetyltransferase in Campylobacter coli BE/G4, FEMS Microbiol. Lett., 1994, vol. 120, pp. 13–17.

    PubMed  CAS  Google Scholar 

  50. Barbosa, T.M., Scott, K.P., and Flint, H.J., Evidence for Recent Intergeneric Transfer of a New Tetracycline Resistance Gene, tet(W), Isolated from Butyrivibrio fibrisolvens, and the Occurrence of tet (O) in Ruminal Bacteria, Environ. Microbiol., 1999, vol. 1, pp. 53–64.

    Article  PubMed  CAS  Google Scholar 

  51. Gibreel, A., Trasz, D.M., Nonaka, L., et al., Incidence of Antibiotic Resistance in Campylobacter jejuni Isolated in Alberta, Canada, from 1999 to 2002, with Special Reference to tet(O)-Mediated Tetracycline Resistance, Antimicrob. Agents Chemother., 2004, vol. 48, pp. 3442–3450.

    Article  PubMed  CAS  Google Scholar 

  52. Giovanetti, E., Brenciani, A., Lupidi, R., et al., Presence of the tet(O)-Gene in Erythromycin-and Tetracycline-Resistant Strains of Streptococcus pyogenes and Linkage with Either the mef(A) or the erm(A) Gene, Atimicrob. Agents Chemother., 2003, vol. 47, pp. 2844–2849.

    Article  CAS  Google Scholar 

  53. Leng, Zh., Riley, D.E., Berger, R.E., et al., Distribution and Mobility of the Tetracycline Resistance Determinant tetQ, J. Antimicrob. Chemother., 1997, vol. 40, pp. 551–559.

    Article  PubMed  CAS  Google Scholar 

  54. Scott, K.P., Melville, C.M., Barbosa, T.M., and Flint, H.J., Occurrence of the New Tetracycline Resistance Gene tet(W) in Bacteria from the Human Gut, Antimicrob. Agents Chemother., 2000, vol. 44, pp. 775–777.

    Article  PubMed  CAS  Google Scholar 

  55. Shoemaker, N.B., Vlamakis, H., Hayes, K., and Salyers, A.A., Evidence for Extensive Resistance Gene Transfer among Bacteroides spp. and among Bacteroides and Other Genera in the Human Colon, Appl. Environ. Microbiol., 2001, vol. 67, pp. 561–568.

    Article  PubMed  CAS  Google Scholar 

  56. Jensen, L.B., Agerso, Y., and Sengelov, G., Presence of erm Genes among Macrolide-Resistant Gram-Positive Bacteria Isolated from Danish Farm Soil, Environ. Int., 2002, vol. 28, pp. 487–491.

    Article  PubMed  CAS  Google Scholar 

  57. Chung, W.O., Werckenthin, C., Schwarz, S., and Roberts, M.C., Host Range of the ermF rRNA Methylase Gene in Bacteria of Human and Animal Origin, J. Antimicrob. Chemother., 1999, vol. 43, pp. 5–14.

    Article  PubMed  CAS  Google Scholar 

  58. Wang, Y., Wang, G.R., Shoemaker, N.B., et al., Distribution of the ermG Gene Among Bacterial Isolates from Porcine Intestinal Contents, Appl. Environ. Microbiol., 2005, vol. 71, pp. 4930–4934.

    Article  PubMed  CAS  Google Scholar 

  59. Luna, V.A., Coates, P., Eady, A.E., Cove, J.H., et al., A Variety of Gram-Positive Bacteria Carry Mobile mef Genes, J. Antimicrob. Chemother., 1999, vol. 44, pp. 19–25.

    Article  PubMed  CAS  Google Scholar 

  60. Luna, V.A., Cousin, S., Jr., Whittington, W.L., and Roberts, M.S., Identification of the Conjugative mef Gene in Clinical Acinetobacter junii and Neisseria gonorrhoeae Isolates, Antimicrob. Agents Chemother., 2000, vol. 44, pp. 2503–2506.

    Article  PubMed  CAS  Google Scholar 

  61. Courvalin, P., Transfer of Antibiotics Resistance Genes between Gram-Positive and Gram-Negative Bacteria, Antimicrob. Agents Chemother., 1994, vol. 38, pp. 1447–1451.

    PubMed  CAS  Google Scholar 

  62. Salyers, A.A., Shoemaker, N.B., Stevens, A.M., and Li, L.-Y., Conjugative Transposons: An Unusual and Diverse Set of Integrated Gene Transfer Elements, Microbiol. Rev., 1995, vol. 59, no. 4, pp. 579–590.

    PubMed  CAS  Google Scholar 

  63. Osborn, A.M. and Boltner, D., When Phage, Plasmids, and Transposons Collide: Genomic Islands, and Conjugative-and Mobilizable-Transposons as a Mosaic Continum, Plasmid, 2002, vol. 48, pp. 202–212.

    Article  PubMed  Google Scholar 

  64. Grohmann, E., Muth, G., and Espinosa, M., Conjugative Plasmid Transfer in Gram-Positive Bacteria, Microbiol. Mol. Biol. Rev., 2003, vol. 67, pp. 277–301.

    Article  PubMed  CAS  Google Scholar 

  65. Cooper, A.J., Shoemaker, N.B., and Salyers, A.A., The Erythromcyin Resistance Gene from the Bacterodies Conjugal Transposon TcR EmR 7853 Is Nearly Identical to ermG from Bacillus sphaericus, Atimicrob. Agents Chemother., 1996, vol. 40, pp. 506–508.

    CAS  Google Scholar 

  66. Piepersberg, W., Distler, J., Heinzel, P., and Perez-Gonzalez, J.-A., Antibiotic Resistance by Modification: Many Resistance Genes Could Be Derived from Cellular Control Genes in Actinomycetes—a Hypothesis, Actinomycetologica, 1988, vol. 2, pp. 83–98.

    Google Scholar 

  67. Berrard, S., Brice, A., Lottspeich, F., et al., cDNA Cloning and Complete Sequence of Porcine Choline Acetyltransferase: in Vitro Translation of the Corresponding RNA Yields an Active Protein, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 9280–9284.

    Article  PubMed  CAS  Google Scholar 

  68. Yoshikawa, A., Isono, S., Shebak, A., and Isono, K., Cloning and Nucleotide Sequencing of the Genes rimI and rimJ which Encode Enzymes Acetylating Ribosomal Proteins S18 and S5 of Escherichia coli K12, Mol. Gen. Genet., 1987, vol. 210, pp. 481–488.

    Article  Google Scholar 

  69. Sugihara, H., Andrisani, V., and Salvaterra, P.M., Drosophila Choline Acetyltransferase Uses a Non-AUG Initiation Codon and Full Length RNA Is Inefficiently Translated, J. Biol. Chem., 1990, vol. 265, pp. 21714–21719.

    PubMed  CAS  Google Scholar 

  70. Heim, U., Tietze, E., Weschke, W., et al., Nucleotide Sequence of a Plasmide Borne Streptothricine Acetyltransferase Gene (sat-1), Nucl. Acids Res., 1989, vol. 17, p. 7103.

    PubMed  CAS  Google Scholar 

  71. Hon, W.C., McKay, G.A., Tnompson, P.R., et al., Structure of an Enzyme Required for Aminoglycoside Antibiotic Resistance Reveals Homology to Eukaryotic Protein Kinases, Cell, 1997, vol. 89, no. 6, pp. 887–895.

    Article  PubMed  CAS  Google Scholar 

  72. Martin, P., Jullien, E., and Courvalin, P., Nucleotide Sequence of Acinetobacter baumannii aphA-6 Gene: Evolutionary and Functional Implications of Sequence Homologies with Nucleotide-Binding Proteins, Kinases and Other Aminoglycoside-Modifying Enzymes, Mol. Microbiol., 1988, vol. 2, pp. 615–625.

    Article  PubMed  CAS  Google Scholar 

  73. Wright, G.D. and Thomson, P.R., Aminoglycoside Phosphotransferases: Proteins, Structure, and Mechanism, Front. Biosci., 1999, vol. 4, pp. 9–21.

    Google Scholar 

  74. Hotta, K., Ishikava, J., Ogata, T., and Mizuno, S., Secondary Aminoglycoside Resistance in Aminoglycoside-Producing Strains of Streptomyces, Gene, 1992, vol. 115, pp. 113–117.

    Article  PubMed  CAS  Google Scholar 

  75. Delorme, C., Ehrlich, S.D., and Renault, P., Histidine Biosynthesis Genes in Lactococcus lactis subsp. lactis, J. Bacteriol., 1992, vol. 174, no. 20, pp. 6571–6579.

    PubMed  CAS  Google Scholar 

  76. Hawkey, P.M. and Constable, H.K., Selection of Netilmicin Resistance, Associated with Increased Aminoglycoside Acetyltransferase Activity, in Serratia marcescens, J. Antimicrob. Chemother., 1988, vol. 21, pp. 535–544.

    PubMed  CAS  Google Scholar 

  77. Suter, T.M., Viswanathan, V.K., and Cianciotto, N.P., Isolation of a Gene Encoding a Novel Spectinomycin Phosphotransferase from Legionella pneumophila, Antimicrob. Agents Chemother., 1997, vol. 41, pp. 1385–1388.

    PubMed  CAS  Google Scholar 

  78. Hächler, H., Santanam, P., and Kayser, F.H., Sequence and Characterization of a Novel Chromosomal Aminoglycoside Phosphotransferase Gene, aph(3′)-IIb, in Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 1996, vol. 40, pp. 1254–1256.

    PubMed  Google Scholar 

  79. Payie, K.G., Rather, P.N., and Clarke, A.J., Contribution of Gentamicin 2′-Acetyltransferase to the O Acetylation of Peptidoglycan in Providencia stuartii, J. Bacteriol., 1995, vol. 177, pp. 4303–4310.

    PubMed  CAS  Google Scholar 

  80. Wright, G.D. and Ladak, P., Overexpression and Characterization of the Chromosomal Aminoglycoside 6′-N-Acetyltransferase from Enterococcus faecium, Antimicrob. Agents Chemother., 1997, vol. 41, pp. 956–960.

    PubMed  CAS  Google Scholar 

  81. Liebert, C.A., Hall, R.M., and Summers, A.O., Transposon Tn21, Flagship of the Floating Genome, Microbiol. Mol. Biol. Rev., 1999, vol. 63, pp. 507–522.

    PubMed  CAS  Google Scholar 

  82. Recchia, G.D. and Hall, R.M., Origins of the Mobile Gene Cassettes Found in Integrons, Trends Microbiol., 1997, vol. 5, pp. 389–394.

    Article  PubMed  CAS  Google Scholar 

  83. Rowe-Magnus, D.A. and Mazel, D., The Role of Integrons in Antibiotic Resistance Gene Capture, Int. J. Med. Microbiol., 2002, vol. 292, pp. 115–125.

    Article  PubMed  CAS  Google Scholar 

  84. Nemergut, D.R., Martin, A.P., and Schmidt, S.K., Integron Diversity in Heavy-Metal-Contaminated Mine Tailings and Inferences about Integron Evolution, Appl. Environ. Microbiol., 2004, vol. 70, no. 2, pp. 1160–1168.

    Article  PubMed  CAS  Google Scholar 

  85. Mazel, D., Dychinco, B., Webb, V.A., and Davies, J., A Distinctive Class of Integron in the Vibrio cholerae Genome, Science, 1998, vol. 280, pp. 605–608.

    Article  PubMed  CAS  Google Scholar 

  86. Partridge, S.R., Collis, C.M., and Hall, R.M., Class 1 Integron Containing a New Gene Cassette, aadA10, Associated with Tn1404 from R151, Antimicrob. Agents Chemother., 2002, vol. 46, no. 8, pp. 2400–2408.

    Article  PubMed  CAS  Google Scholar 

  87. Holmes, A.J., Gillings, M.R., Nield, B.S., et al., The Gene Cassette Metagenome Is a Basic Resource for Bacterial Genome Evolution, Environ. Microbiol., 2003, vol. 5, no. 5, pp. 383–394.

    Article  PubMed  CAS  Google Scholar 

  88. Ilyina, T.S., Structural Organization and the Mechanism of the Transposition of Gene Cassettes Coding for the Resistance to Antibiotics and Virulence Factors of Bacteria, Mol. Genet., 2001, no. 1, pp. 3–12.

  89. Bissonnette, L., Champetier, S., Buisson, J.-P., and Roy, P.H., Characterization of the Nonenzymatic Chloramphenicol Resistance (cmlA) Gene of the In4 Integron of Tn1696: Similarity of the Product to Transmembrane Transport Proteins, J. Bacteriol., 1991, vol. 173, pp. 4493–4502.

    PubMed  CAS  Google Scholar 

  90. Bunny, K.L., Hall, R.M., and Stokes, H.W., New Mobile Gene Cassettes Containing an Aminoglycoside Resistance Gene, aacA7, and a Chloramphenicol Resistance Gene, catB3, in an Integron in PBWH301, Antimicrob. Agents Chemother., 1995, vol. 39, pp. 686–693.

    PubMed  CAS  Google Scholar 

  91. Riccio, M.L., Pallecchi, L., Fontana, R., and Rossolini, G.M., In70 of Plasmid PAX22, a bla vim-1-Containing Integron Carrying a New Aminoglycoside Phosphotransferase Gene Cassette, Antimicrob. Agents Chemother., 2001, vol. 45, pp. 1249–1253.

    Article  PubMed  CAS  Google Scholar 

  92. Senda, A., Arakawa, Y., Ichiyama, S., et al., PCR Detection of Metallo-Beta-Lactamase Gene (bla imp) in Gram-Negative Rods Resistant to Broad-Spectrum Beta-Lactams, J. Clin. Microbiol., 1996, vol. 34, pp. 2909–2913.

    PubMed  CAS  Google Scholar 

  93. White, P.A., McIver, C.J., and Rawlinson, W.D., Integrons and Gene Cassettes in the Enterobacteriaceae, Antimicrob. Agents Chemother., 2001, vol. 45, pp. 2658–2661.

    Article  PubMed  CAS  Google Scholar 

  94. Villa, L., Visca, P., Tosini, F., et al., Composite Integron Array Generated by Insertion of an ORF341-Type Integron within a Tn21-Like Element, Microb. Drug Resist., 2002, vol. 8, pp. 1–7.

    Article  PubMed  CAS  Google Scholar 

  95. Datta, N. and Hughes, V.M., Plasmids of the Same Inc Groups in Enterobacteria Before and After the Medical Use of Antibiotics, Nature, 1983, vol. 306, pp. 616–617.

    Article  PubMed  CAS  Google Scholar 

  96. Carattoli, A., Villa, L., Pezzella, C., et al., Expanding Drug Resistance through Integron Acquisition by IncFI Plasmids of Salmonella enterica Typhimurium, Emerg. Infect. Dis., 2001, vol. 7, pp. 444–447.

    PubMed  CAS  Google Scholar 

  97. Naas, T., Mikami, Y., Imai, T., et al., Characterization of In53, a Class 1 Plasmid-and Composite Transposon-Located Integron of Escherichia coli which Carries an Unusual Array of Gene Cassettes, J. Bacteriol., 2001, vol. 183, pp. 235–249.

    Article  PubMed  CAS  Google Scholar 

  98. Kono, M., Sasatsu, M., and Aoki, T., R Plasmids in Corynebacterium xerosis Strains, Antimicrob. Agents Chemother., 1983, vol. 23, pp. 506–508.

    PubMed  CAS  Google Scholar 

  99. Tauch, A., Krieft, S., Kalinowski, J., and Puhler, A., The 51.409-bp R-Plasmid pTP10 from the Multiresistant Clinical Isolate Corynebacterium striatum M82B Is Composed of DNA Segments Initially Identified in Soil Bacteria and in Plant, Animal, and Human Pathogen, Mol. Gen. Genet., 2000, vol. 263, no. 1, pp. 1–11.

    Article  PubMed  CAS  Google Scholar 

  100. Sundin, G.W., Monks, D.E., and Bender, C.L., Distribution of the Streptomycin-Resistance Transposon Tn5393 among Phylloplane and Soil Bacteria from Managed Agricultural Habitats, Can. J. Microbiol., 1995, vol. 41, pp. 792–799.

    Article  PubMed  CAS  Google Scholar 

  101. Szczepanowski, R., Braun, S., Riedel, V., et al., The 120 592 bp IncF Plasmid pRSB107 Isolated from a Sewage-Treatment Plant Encodes Nine Different Antibiotic-Resistance Determinants, Two Iron-Asquisition Systems and Other Putative Virulence-Associated Functions, Microbiology, 2005, vol. 151, pp. 1095–1111.

    Article  PubMed  CAS  Google Scholar 

  102. Guerra, B., Soto, S., Helmuth, R., and Mendoza, M.C., Characterization of a Self-Transferable Plasmid from Salmonella enterica Serotype Typhimurium Clinical Isolates Carrying Tw Integron-Borne Gene Cassettes Together with Virulence and Drug Resistance Genes, Antimicrob. Agents Chemother., 2002, vol. 46, pp. 2977–2981.

    Article  PubMed  CAS  Google Scholar 

  103. Pezzella, C., Ricci, A., DiGiannatale, E., et al., Tetracycline and Streptomycin Resistance Genes, Transposons, and Plasmids in Salmonella enterica Isolates from Animals in Italy, Antimicrob. Agents Chemother., 2004, vol. 48, pp. 903–908.

    Article  PubMed  CAS  Google Scholar 

  104. Schmidt, A.S., Bruun, M.S., Larsen, J.L., and Dalsgaard, I., Characterization of Class 1 Integrons Associated with R-Plasmids in Clinical Aeromonas salmonicida Isolates from Various Geographical Areas, J. Antimicrob. Chemother., 2001, vol. 47, pp. 735–743.

    Article  PubMed  CAS  Google Scholar 

  105. Tauch, A., Schluter, A., Bischoff, N., et al., The 79.370-bp Conjugative Plasmid pB4 Consists of an IncP-Ibeta Backbone Loaded with a Chromate Resistance Transposon, the strA-strB Streptomycin Resistance Gene Pair, the Oxacillinase Genebla (NPS-1), and a Tripartite Antibiotic Efflux System of the Resistance-Nodulation-Division Family, Mol. Genet. Genomics, 2003, vol. 268, no. 5, pp. 570–584.

    PubMed  CAS  Google Scholar 

  106. Summers, A.O., Generally Overlooked Fundamentals of Bacterial Genetics and Ecology, Clin. Infect. Dis., 2002, vol. 34,suppl. 3, pp. S85–S92.

    Article  PubMed  CAS  Google Scholar 

  107. Trieu-Cuot, P., Arthur, M., and Courvalin, P., Origin, Evolution, and the Dissemination of Antibiotic Resistance Genes, Microbiol. Sci., 1987, vol. 4, pp. 263–266.

    PubMed  CAS  Google Scholar 

  108. Carattoli, A., Importance of Integrons in the Diffusion of Resistance, Vet. Res., 2001, vol. 32, pp. 243–259.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.Z. Mindlin, M.A. Petrova, I.A. Bass, Zh.M. Gorlenko, 2006, published in Genetika, 2006, Vol. 42, No. 11, pp. 1495–1511.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mindlin, S.Z., Petrova, M.A., Bass, I.A. et al. Origin, evolution, and migration of drug resistance genes. Russ J Genet 42, 1257–1271 (2006). https://doi.org/10.1134/S1022795406110081

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406110081

Keywords

Navigation