Skip to main content
Log in

Activities of antioxidant enzymes of Arabidopsis thaliana plants during cold hardening to hypothermia

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Changes in activities of the enzymes performing direct antioxidant functions were studied in 7–8-week-old plants Arabidopsis thaliana Heinh (L.) of Columbia (Col-0) ecotype. It was found that 5-day cold hardening at 2°C increased plant cold resistance to the subsequent stronger cooling. Under these conditions, the marked changes occurred in activities of superoxide dismutase and III type (guaiacol) peroxidses but not in that of catalase. The total peroxidase activity exceeded the catalase activity before cold hardening. Therefore, peroxidases are able to decompose more H2O2 than catalases and appear to make the dominant contribution to the protection from the cold damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

catalase

MDA:

malonic dialdehyde

POL:

peroxidation of lipids

POX:

peroxidase

SOD:

superoxide dismutase

References

  1. Kolesnichenko, A.V. and Voinikov, V.K., Belki nizkotemperaturnogo stressa rastenii (Plant Proteins under Low Temperature Stress), Irkutsk: Art-Press, 2003.

    Google Scholar 

  2. Petrov, K.A., Sofronova, V.E., Bubyakina, V.V., Perk, A.A., Tatarinova, T.D., Ponomarev, A.G., Chepalov, V.A., Okhlopkova, Zh.M., Vasil’eva, I.V., and Maksimov, T.Kh., Woody plants of Yakutia and low-temperature stress, Russ. J. Plant Physiol., 2011, vol. 58, pp. 1011–1019.

    Article  CAS  Google Scholar 

  3. Fortunato, A.S., Lidon, F.C., Batista-Santos, P., Leitao, A.E., Pais, I.P., Ribeiro, A.I., and Ramalho, J.C., Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance, J. Plant Physiol., 2010, vol. 160, pp. 333–342.

    Article  Google Scholar 

  4. Levitt, J., Responses of Plants to Environmental Stresses, Vol. 1: Chilling, Freezing and High Temperature Stresses, New York: Academic, 1980.

    Google Scholar 

  5. Trunova, T.I., Rastenie i nizkotemperaturnyi stress. 64-e Timiryazevskoe chtenie (Plant and Low Temperature Stress, the 64th Timiryazev Lecture), Moscow: Nauka, 2007.

    Google Scholar 

  6. Sin’kevich, M.S., Naraikina, N.V., and Trunova, T.I., Processes hindering activation of lipid peroxidation in cold-tolerant plants under hypothermia, Russ. J. Plant Physiol., 2011, vol. 58, pp. 1020–1026.

    Article  Google Scholar 

  7. Hasdai, M., Weiss, B., Levi, A., Samach, A., and Porat, R., Differential responses of Arabidopsis ecotypes to cold, chilling and freezing temperatures, Ann. Appl. Biol., 2006, vol. 148, pp. 113–120.

    Article  Google Scholar 

  8. Lukatkin, A.S., Kholodovoe povrezhdenie teplolyubivykh rastenii i okislitel’nyi stress (Cold Damage of the Heat-Loving Plants and Oxidative Stress), Saransk: Mord. Gos. Univ., 2002.

    Google Scholar 

  9. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.

    Article  CAS  PubMed  Google Scholar 

  10. Naraikina, N.V., Sin’kevich, M.S., Demin, I.N., Selivanov, A.A., Moshkov, I.E., and Trunova, T.I., Changes in the activity of superoxide dismutase isoforms in the course of low-temperature adaptation in potato plants of wild type and transformed with d12-acyl-lipid desaturase gene, Russ. J. Plant Physiol., 2014, vol. 61, pp. 332–338.

    Article  CAS  Google Scholar 

  11. Astakhova, N.V., Popov, V.N., Selivanov, A.A., Burakhanova, E.A., Alieva, G.P., and Moshkov, I.E., Reorganization of chloroplast ultrastructure associated with low-temperature hardening of Arabidopsis plants, Russ. J. Plant Physiol., 2014, vol. 61, pp. 744–750.

    Article  CAS  Google Scholar 

  12. Stal’naya, I.D. and Garishvili, T.D., Method for determination of malondialdehyde via thiobarbituric acid, Sovremennye metody v meditsine (Current Methods for Medicine), Moscow: Meditsina, 1977, p. 66.

    Google Scholar 

  13. Hepburn, H.A., Nayllor, F.L., and Strokes, D.I., Electrolyte leakage from winter barley tissue as indicator of winter hardiness, Ann. Appl. Biol., 1986, vol. 108, pp. 164–165.

    Google Scholar 

  14. Kumar, G.N. and Knowles, N.R., Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme during aging and sprouting of potato (Solanum tuberosum L.) seed-tubers, Plant Physiol., 1993, vol. 102, pp. 115–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sin’kevich, M.S., Antioxidant system of Arabidopsis plants at hardening to cold, Mater. Vseross. konf. s mezhd. uchastiem “Signal’nye sistemy rastenii: ot retseptora do otvetnoi reaktsii organizma” (Proc. All-Russia Conf. with Int. Participation “Plant Signal System: from Receptor to Organism Responsiveness”), St. Petersburg, 2016.

    Google Scholar 

  16. Demidchik, V., Mechanisms of oxidative stress in plants: from classical chemistry to cell biology, Environ. Exp. Bot., 2015, vol. 109, pp. 212–228.

    Article  CAS  Google Scholar 

  17. Noctor, G., Lelarge-Trouverie, C., and Mhamdi, A., The metabolomics of oxidative stress, Phytochemistry, 2015, vol. 112, pp. 33–53.

    Article  CAS  PubMed  Google Scholar 

  18. Chasov, A.V., Gordon, L.Kh., Kolesnikov, O.P., and Minibaeva, F.V., Peroxidase of the cell surface is a superoxide anion generator in wheat root cells under wounding, Tsitologiya, 2002, vol. 44, pp. 691–696.

    CAS  Google Scholar 

  19. Fischer, B.B., Hideg, E., and Krieger-Liszkay, A., Production,detection and signaling of singlet oxygen in photosynthetic organisms, Antioxid. Redox Signaling, 2013, vol. 18, pp. 2145–2162.

    Article  CAS  Google Scholar 

  20. Sin’kevich, M.S., Deryabin, A.N., and Trunova, T.I., Characteristics of oxidative stress in potato plants with modified carbohydrate metabolism, Russ. J. Plant Physiol., 2009, vol. 56, pp. 168–174.

    Article  Google Scholar 

  21. Henzler, T. and Steudle, E., Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels, J. Exp. Bot., 2000, vol. 51, pp. 2053–2066.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Sin’kevich.

Additional information

Original Russian Text © M.S. Sin’kevich, A.A. Selivanov, O.V. Antipina, E.V. Kropocheva, G.P. Alieva, T.A. Suvorova, N.V. Astakhova, I.E. Moshkov, 2016, published in Fiziologiya Rastenii, 2016, Vol. 63, No. 6, pp. 777–782.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sin’kevich, M.S., Selivanov, A.A., Antipina, O.V. et al. Activities of antioxidant enzymes of Arabidopsis thaliana plants during cold hardening to hypothermia. Russ J Plant Physiol 63, 749–753 (2016). https://doi.org/10.1134/S1021443716060108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716060108

Keywords

Navigation