Skip to main content
Log in

Eukaryotic protein kinases in cyanobacteria

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

This review presents the data on the role of eukaryotic-like serine/threonine protein kinases in the members of various groups of cyanobacteria. Information is provided for the two most studied model species (Anabaena and Synechocystis), differing in their morphology and ecophysiological features, and covers the entire period of study of this group of enzymes in cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

STPK:

Ser/Thr protein kinase(s)

STPP:

Ser/Thr protein phosphatase(s)

References

  1. Whitton, B.A. and Potts, M., Introduction to the cyanobacteria, The Ecology of Cyanobacteria: Their Diversity in Time and Space, Whitton, B.A. and Potts, M., Eds., Dordrecht: Kluwer, 2000, pp. 1–13.

    Google Scholar 

  2. Rastogia, R.P. and Sinha, R.P., Biotechnological and industrial significance of cyanobacterial secondary metabolites, Biotech. Adv., 2009, vol. 27, pp. 521–539.

    Article  Google Scholar 

  3. Bendera, J. and Phillips, P., Microbial mats for multiple applications in aquaculture and bioremediation, Biores. Technol., 2004, vol. 94, pp. 229–238.

    Article  Google Scholar 

  4. Dismukes, G.C., Carrieri, D., Bennette, N., Ananyev, G.M., and Posewitz, M.C., Aquatic phototrophs: efficient alternatives to land-based crops for biofuels, Curr. Opin. Biotechnol., 2008, vol. 19, pp. 235–240.

    Article  PubMed  CAS  Google Scholar 

  5. Mijakovic, I. and Macek, B., Impact of phosphoproteomics on studies of bacterial physiology, FEMS Microbiol. Rev., 2012, vol. 36, pp. 877–892.

    Article  PubMed  CAS  Google Scholar 

  6. Mitrophanov, A.Y. and Groisman, E.A., Signal integration in bacterial two-component regulatory systems, Gene Dev., 2008, vol. 22, pp. 2601–2611.

    Article  PubMed  CAS  Google Scholar 

  7. Wang, L., Sun, Y.P., Chen, W.L., Li, J.H., and Zhang, C.C., Genomic analysis of protein kinases, protein phosphatases and two-component regulatory systems of the cyanobacterium Anabaena sp. strain PCC 7120, FEMS Microbiol. Letts., 2002, vol. 217, pp. 155–165.

    Article  CAS  Google Scholar 

  8. Ashby, M.K. and Houmard, J., Cyanobacterial two-component proteins: structure, diversity, distribution, and evolution, Microbiol. Mol. Biol. Rev., 2006, vol. 70, pp. 472–509.

    Article  PubMed  CAS  Google Scholar 

  9. Klumpp, S. and Krieglstein, J., Phosphorylation and dephosphorylation of histidine residues in proteins, Eur. J. Biochem., 2002, vol. 269, pp. 1067–1071.

    Article  PubMed  CAS  Google Scholar 

  10. Mascher, T., Helmann, J.D., and Unden, G., Stimulus perception in bacterial signal-transducing histidine kinases, Microbiol. Mol. Biol. Rev., 2006, vol. 70, pp. 910–938.

    Article  PubMed  CAS  Google Scholar 

  11. Muñoz-Dorado, J., Inouye, S., and Inouye, M., A gene encoding a protein serine/threonine kinase is required for normal development of Myxococcus xanthus, a gram-negative bacterium, Cell, 1991, vol. 67, pp. 995–1006.

    Article  PubMed  Google Scholar 

  12. Wurgler-Murphy, S.M. and Saito, H., Two-component signal transducers and MAPK cascades, Trends Biochem. Sci., 1997, vol. 22, pp. 172–176.

    Article  PubMed  CAS  Google Scholar 

  13. Kennelly, P.J., Protein kinases and protein phosphatases in prokaryotes: a genomic perspective, FEMS Microbiol. Lett., 2002, vol. 206, pp. 1–8.

    Article  PubMed  CAS  Google Scholar 

  14. Molle, V. and Kremer, L., Division and cell envelope regulation by Ser/Thr phosphorylation: mycobacterium shows the way, Mol. Microbiol., 2010, vol. 75, pp. 1064–1077.

    Article  PubMed  CAS  Google Scholar 

  15. Petříčková, K. and Petříček, M., Eukaryotic-type protein kinases in Streptomyces coelicolor: variations on a common theme, Microbiology, 2003, vol. 149, pp. 1609–1621.

    Article  PubMed  Google Scholar 

  16. Nariya, H. and Inouye, S., Identification of a protein Ser/Thr kinase cascade that regulates essential transcriptional activators in Myxococcus xanthus, Mol. Microbiol., 2005, vol. 58, pp. 367–379.

    Article  PubMed  CAS  Google Scholar 

  17. Blattner, F.R., Plunkett, G.,III, Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.W., Kirkpatrick, H.A., Goeden, M.A., Rose, D.J., Mau, B., and Shao, Y., The complete genome sequence of Escherichia coli K-12, Science, 1997, vol. 277, pp. 1453–1474.

    Article  PubMed  CAS  Google Scholar 

  18. Enami, M. and Ishihama, A., Protein phosphorylation in Escherichia coli and purification of a protein kinase, J. Biol. Chem., 1984, vol. 259, pp. 526–533.

    PubMed  CAS  Google Scholar 

  19. Macek, B., Gnad, F., Soufi, B., Kumar, C., Olsen, J.V., Mijakovic, I., and Mann, M., Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation, Mol. Cell Proteom., 2008, vol. 7, pp. 299–307.

    Article  CAS  Google Scholar 

  20. Zheng, J., He, C., Singh, V.K., Martin, N.L., and Jia, Z., Crystal structure of a novel prokaryotic Ser/Thr kinase and its implication in the Cpx stress response pathway, Mol. Microbiol., 2007, vol. 63, pp. 1360–1371.

    Article  PubMed  CAS  Google Scholar 

  21. Scheeff, E.D. and Bourne, P.E., Structural evolution of the protein kinase-like superfamily, PLoS Comput. Biol., 2005, vol. 1: e49.

  22. Pérez, J., Castañeda-García, A., Jenke-Kodama, H., Müller, R., and Muñoz-Dorado, J., Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 15950–15955

    Article  PubMed  Google Scholar 

  23. Zhang, C.C., A gene encoding a protein related to eukaryotic protein kinases from the filamentous heterocystous cyanobacterium Anabaena PCC 7120, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 11840–11844.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang, X., Zhao, F., Guan, X., Yang, Y., Liang, C., and Qin, S., Genome-wide survey of putative serine/threonine protein kinases in cyanobacteria, BMC Genom., 2007, vol. 8, p. 395.

    Article  Google Scholar 

  25. Galperin, M.Y., A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts, BMC Microbiol., 2005, vol. 5, pp. 35–55.

    Article  PubMed  Google Scholar 

  26. Ohmori, M., Ikeuchi, M., Sato, N., Wolk, P., Kaneko, T., Ogawa, T., Kanehisa, M., Goto, S., Kawashima, S., Okamoto, S., Yoshimura, H., Katoh, H., Fujisawa, T., Ehira, S., Kamei, A., Yoshihara, S., Narikawa, R., and Tabata, S., Characterization of genes encoding multi-domain proteins in the genome of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120, DNA Res., 2001, vol. 8, pp. 271–284.

    Article  PubMed  CAS  Google Scholar 

  27. Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura, M., Sasamoto, S., Kimura, T., Hosouchi, T., Matsuno, A., Muraki, A., Nakazaki, N., Naruo, K., Okumura, S., Shimpo, S., Takeuchi, C., Wada, T., Watanabe, A., Yamada, M., Yasuda, M., and Tabata, S., Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803: 2. Sequence determination of the entire genome and assignment of potential protein-coding regions, DNA Res., 1996, vol. 3, pp. 109–136.

    Article  PubMed  CAS  Google Scholar 

  28. Kaneko, T., Nakamura, Y., Sasamoto, S., Watanabe, A., Kohara, M., Matsumoto, M., Shimpo, S., Yamada, M., and Tabata, S., Structural analysis of four large plasmids harboring in a unicellular cyanobacterium, Synechocystis sp. PCC 6803, DNA Res., 2003, vol. 10, pp. 221–228.

    Article  PubMed  CAS  Google Scholar 

  29. Hanks, S.K. and Hunter, T., Protein kinases. 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification, J. FASEB, 1995, vol. 9, pp. 576–596.

    CAS  Google Scholar 

  30. Akamine, P., Madhusudan, Wu J., Xuong, N.-H., Ten, Eyck, L.F., and Taylor, S.S., Dynamic features of camp-dependent protein kinase revealed by apoenzyme crystal structure, J. Mol. Biol., 2003, vol. 327, pp. 159–171.

    Article  PubMed  CAS  Google Scholar 

  31. Kannan, N., Taylor, S.S., Zhai, Y., Venter, C.J., and Manning, G., Structural and functional diversity of the microbial kinome, PLoS Biol., 2007, vol. 5: e17.

    Article  PubMed  Google Scholar 

  32. Zhang, C.C., Gonzalez, L., and Phalip, V., Survey, analysis and genetic organization of genes encoding eukaryotic-like signaling proteins on a cyanobacterial genome, Nucleic Acids Res., 1998, vol. 26, pp. 3619–3625.

    Article  PubMed  CAS  Google Scholar 

  33. Taylor, S.S. and Kornev, A.P., Protein kinases: evolution of dynamic regulatory proteins, Trends Biochem. Sci., 2011, vol. 36, pp. 65–77.

    Article  PubMed  CAS  Google Scholar 

  34. Krupa, A. and Srinivasan, N., Diversity in domain architectures of Ser/Thr kinases and their homologues in prokaryotes, BMC Genom., 2005, vol. 6, p. 129.

    Article  CAS  Google Scholar 

  35. Phalip, V., Li, J.H., and Zhang, C.C., Hstk, a cyanobacterial protein with both a serine/threonine kinase domain and a histidine kinase domain: implication for the mechanism of signal transduction, J. Biochem., 2001, vol. 360, pp. 639–644.

    Article  CAS  Google Scholar 

  36. Pereira, S.F.F., Goss, L., and Dworkin, J., Eukaryotelike serine/threonine kinases and phosphatases in bacteria, Microbiol. Mol. Biol. Rev., 2011, vol. 75, pp. 192–212.

    Article  PubMed  CAS  Google Scholar 

  37. Molle, V., Kremer, L., Girard-Blanc, C., Besra, G.S., Cozzone, A.J., and Prost, J.-F., An FHA phosphoprotein recognition domain mediates protein Embr phosphorylation by Pknh, a Ser/Thr protein kinase from Mycobacterium tuberculosis, Biochemistry, 2003, vol. 42, pp. 15300–15309.

    Article  PubMed  CAS  Google Scholar 

  38. Curry, J.M., Whalan, R., Hunt, D.M., Gohil, K., Strom, M., Rickman, L., Colston, M.J., Smerdon, S.J., and Buxton, R.S., An ABC transporter containing a forkhead-associated domain interacts with a serine- threonine protein kinase and is required for growth of Mycobacterium tuberculosis in mice, Infect. Immun., 2005, vol. 73, pp. 4471–4477.

    Article  PubMed  CAS  Google Scholar 

  39. Canova, M.J., Veyron-Churlet, R., Zanella-Cleon, I., Cohen-Gonsaud, M., Cozzone, J.A., Becchi, M., Kremer, L., and Molle, V., The Mycobacterium tuberculosis serine/threonine kinase Pknl phosphorylates Rv2175c: mass spectrometric profiling of the activation loop phosphorylation sites and their role in the recruitment of Rv2175c, Proteomics, 2008, vol. 8, pp. 521–533.

    Article  PubMed  CAS  Google Scholar 

  40. Absalon, C., Obuchowski, M., Madec, E., Delattre, D., Holland, I.B., and Séror, S.J., CpgA, EF-Tu and the stressosome protein Yezb are substrates of the Ser/Thr kinase/phosphatase couple, PrkC/PrpC, in Bacillus subtilis, Microbiology, 2009, vol. 155, pp. 932–943.

    Article  PubMed  CAS  Google Scholar 

  41. Kennelly, P.J. and Potts, M., Fancy meeting you here! A fresh look at “prokaryotic” protein phosphorylation, J. Bacteriol., 1996, vol. 178, pp. 4759–4764.

    PubMed  CAS  Google Scholar 

  42. Zhang, C.C. and Libs, L., Cloning and characterization of the pknD gene encoding an eukaryotic-type protein kinase in the cyanobacterium Anabaena sp. PCC 7120, Mol. Gen. Genet., 1998, vol. 258, pp. 26–33.

    Article  PubMed  CAS  Google Scholar 

  43. Xu, W.L., Jeanjean, R., Liu, Y.D., and Zhang, C.C., pkn22 (alr2502) encoding a putative Ser/Thr kinase in the cyanobacteium Anabaena sp. PCC7120 is induced by both iron starvation and oxidative stress and regulates the expression of isiA, FEBS Lett., 2003, vol. 553, pp. 179–182.

    Article  PubMed  CAS  Google Scholar 

  44. Gonzalez, L., Phalip, V., and Zhang, C.C., Characterization of PknC, a Ser/Thr kinase with broad substrate specificity from the cyanobacterium Anabaena sp. strain PCC 7120, Eur. J. Biochem., 2001, vol. 268, pp. 1869–1875.

    Article  PubMed  CAS  Google Scholar 

  45. Cheng, Y., Li, J.-H., Shi, L., Wang, L., Latifi, A., and Zhang, C.C., A pair of iron-responsive genes encoding protein kinases with a Ser/Thr kinase domain and a His kinase domain are regulated by Ntca in the cyanobacterium Anabaena sp. strain PCC 7120, J. Bacteriol., 2006, vol. 188, pp. 4822–4829.

    Article  PubMed  CAS  Google Scholar 

  46. Wei, T.F., Ramasubramanian, T.S., and Golden, J.W., Anabaena sp. strain PCC 7120 ntcA gene required for growth on nitrate and heterocyst development, J. Bacteriol., 1994, vol. 176, pp. 4473–4482.

    PubMed  CAS  Google Scholar 

  47. Kumar, K., Mella-Herrera, R.A., and Golden, J.W., Cyanobacterial heterocysts, Cold Spring Harb. Perspect., Biol., 2010, vol. 2: a000315.

    Article  Google Scholar 

  48. Shi, L., Li, J.H., Cheng, Y., Wang, L., Chen, W.L., and Zhang, C.C., Two genes encoding protein kinases of the Hstk family are involved in synthesis of the minor heterocyst-specific glycolipid in the cyanobacterium Anabaena sp. strain PCC 7120, J. Bacteriol., 2007, vol. 189, pp. 5075–5081.

    Article  PubMed  CAS  Google Scholar 

  49. Tom, S.K. and Callahan, S.M., The putative phosphatase All1758 is necessary for normal growth, cell size and synthesis of the minor heterocyst-specific glycolipid in the cyanobacterium Anabaena sp. strain PCC 7120, Microbiology, 2012, vol. 158, pp. 380–389.

    Article  PubMed  CAS  Google Scholar 

  50. Jang, J., Wang, L., Jeanjean, R., and Zhang, C.C., PrpJ, a PP2C-type protein phosphatase located on the plasma membrane, is involved in heterocyst maturation in the cyanobacterium Anabaena sp. PCC 7120, Mol. Microbiol., 2007, vol. 64, pp. 347–358.

    Article  PubMed  CAS  Google Scholar 

  51. Lechno-Yossef, S., Fan, Q., Ehira, S., Sato, N., and Wolk, C.P., Mutations in four regulatory genes have interrelated effects on heterocyst maturation in Anabaena sp. strain PCC 7120, J. Bacteriol., 2006, vol. 188, pp. 7387–7395.

    Article  PubMed  CAS  Google Scholar 

  52. Ehira, S. and Ohmori, M., NrrA, a nitrogen-responsive response regulator facilitates heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120, Mol. Microbiol., 2006, vol. 59, pp. 1692–1703.

    Article  PubMed  CAS  Google Scholar 

  53. Saha, S.K. and Golden, J.W., Overexpression of pknE blocks heterocyst development in Anabaena sp. strain PCC 7120, J. Bacteriol., 2011, vol. 193, pp. 2619–2629.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang, C.C., Friry, A. and Peng, L., Molecular and genetic analysis of two closely linked genes that encode, respectively, a protein phosphatase 1/2A/2B homolog and a protein kinase homolog in the cyanobacterium Anabaena sp. strain PCC 7120, J. Bacteriol., 1998, vol. 180, pp. 2616–2622.

    PubMed  CAS  Google Scholar 

  55. Ehira, S. and Ohmori, M., The pknH gene restrictively expressed in heterocysts is required for diazotrophic growth in the cyanobacterium Anabaena sp. strain PCC 7120, Microbiology, 2012, vol. 158, pp. 1437–1443.

    Article  PubMed  CAS  Google Scholar 

  56. Espinosa, J., Brunner, T., Fiedler, N., Forchhammer, K., Muro-Pastor, A.M., and Maldener, I., DevT (Alr4674), resembling a Ser/Thr protein phosphatase, is essential for heterocyst function in the cyanobacterium Anabaena sp. PCC 7120, Microbiology, 2010, vol. 156, pp. 3544–3555.

    Article  PubMed  CAS  Google Scholar 

  57. Kamei, A., Yuasa, T., Orikawa, K., Geng, X., and Ikeuchi, M., A eukaryotic-type protein kinase, SpkA, is required for normal motility of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803, J. Bacteriol., 2001, vol. 183, pp. 1505–1510.

    Article  PubMed  CAS  Google Scholar 

  58. Kamei, A., Yoshihara, S., Yuasa, T., Geng, X., and Ikeuchi, M., Biochemical and functional characterization of a eukaryotic-type protein kinase, SpkB, in the cyanobacterium, Synechocystis sp. PCC 6803, Curr. Microbiol., 2003, vol. 46, pp. 296–301.

    Article  PubMed  CAS  Google Scholar 

  59. Panichkin, V.B., Arakawa-Kobayashi, S., Kanaseki, T., Suzuki, I., Los, D.A., Shestakov, S.V., and Murata, N., Serine/threonine protein kinase SpkA in Synechocystis sp. strain PCC 6803 is a regulator of expression of three putative pilA operons, formation of thick Pili, and cell motility, J. Bacteriol., 2006, vol. 188, pp. 7696–7699.

    Article  PubMed  CAS  Google Scholar 

  60. Galkin, A.N., Mikheeva, L.E., and Shestakov, S.V., The insertional inactivation of genes encoding eukaryotic-type serine/threonine protein kinases in the cyanobacterium Synechocystis sp. PCC 6803, Mikrobiology (Moscow), 2003, no. 72, pp. 52–57.

    Google Scholar 

  61. Laurent, S., Jang, J., Janicki, A., Zhang, C.C., and Bédu, S., Inactivaton of spkD, encoding a Ser/Thr kinase, affects the pool of the TCA cycle metabolites in Synechocyctis sp. strain PCC 6803, Microbiology, 2008, vol. 154, pp. 2161–2167.

    Article  PubMed  CAS  Google Scholar 

  62. Zorina, A., Stepanchenko, N., Novikova, G.V., Sinetova, M., Panichkin, V.B., Moshkov, I.E., Zinchenko, V.V., Shestakov, S.V., Suzuki, I., Murata, N., and Los, D.A., Eukaryotic-like Ser/Thr protein kinases SpkC/F/K are involved in phosphorylation of GroES in the cyanobacterium Synechocystis, DNA Res., 2011, vol. 18, pp. 137–151.

    Article  PubMed  CAS  Google Scholar 

  63. Mata-Cabana, A., García-Domínguez, M., Florencio, F.J., and Lindahl, M., Thiol-based redox modulation of a cyanobacterial eukaryotic-type serine/threonine kinase required for oxidative stress tolerance, Antiox. Redox Signal., 2012, vol. 17, pp. 521–533.

    Article  CAS  Google Scholar 

  64. Kamei, A., Yuasa, T., Geng, X., and Ikeuchi, M., Biochemical examination of the potential eukaryotic-type protein kinase genes in the complete genome of the unicellular cyanobacterium Synechocystis sp. PCC 6803, DNA Res., 2002, vol. 9, pp. 71–78.

    Article  PubMed  CAS  Google Scholar 

  65. Wegener, K.M., Welsh, E.A., Thornton, L.E., Keren, N., Jacobs, J.M., Hixson, K.K., Monroe, M.E., Camp, D.G., Smith, R.D., and Pakrasi, H.B., High sensitivity proteomics assisted discovery of a novel operon involved in the assembly of photosystem II, a membrane protein complex, J. Biol. Chem., 2008, vol. 283, pp. 27829–27837.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zorina.

Additional information

Original Russian Text © A.A. Zorina, 2013, published in Fiziologiya Rastenii, 2013, Vol. 60, No. 5, pp. 625–633.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zorina, A.A. Eukaryotic protein kinases in cyanobacteria. Russ J Plant Physiol 60, 589–596 (2013). https://doi.org/10.1134/S1021443713040195

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443713040195

Keywords

Navigation