Skip to main content
Log in

Structural features of fullerene-containing star-shaped polystyrene molecules with Oligomer arms in solutions

  • Solutions
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The structure and conformational properties of star-shaped oligostyrenes containing fullerene C60 as a branching center and short arms with lengths at the level of the persistent length or a segment of a polystyrene chain are studied by small-angle neutron scattering in deuterotoluene. The gyration radii of linear precursor oligomers (∼0.4 and 0.6 nm) and corresponding star-shaped molecules (∼1.1 and 1.4 nm) are calculated under the Guinier approximation. The linear oligomer (4–5 units) is found to be a rodlike molecule; arms of star-shaped molecules based on it assume the straightened conformations as well. Linear oligomer chains composed of 6–7 units deviate from the rodlike shape and acquire a certain flexibility in solution, but oligomer chains grafted onto the C60 center preserve the extended conformations. There is no marked tendency toward screening of fullerene by radially extended arms. The number of branches in the star-shaped oligostyrenes corresponds to a functionality of f = 6 preset by the conditions of synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Freire, Adv. Polym. Sci. 143, 35 (1999).

    Article  CAS  Google Scholar 

  2. W. Burchard, Adv. Polym. Sci. 143, 113 (1999).

    Article  CAS  Google Scholar 

  3. I. I. Tverdokhlebova, Usp. Khim. 46, 1279 (1977).

    Article  CAS  Google Scholar 

  4. M. Daoud and J. P. Cotton, J. Phys. 43, 531 (1982).

    Article  CAS  Google Scholar 

  5. T. M. Birshtein and E. B. Zhulina, Polymer 25, 1453 (1984).

    Article  CAS  Google Scholar 

  6. P.-G. De Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1979; Mir, Moscow, 1982).

    Google Scholar 

  7. D. Richter, O. Jucknischke, L. Willner, L. J. Fetters, M. Lin, J. S. Huang, J. Roovers, C. Toporovski, and L. L. Zhou, J. Phys. IV 3, C8–3 (1993).

    Google Scholar 

  8. Y. Ederle and C. Mathis, Fullerene Sci. Technol. 4, 1177 (1996).

    Article  CAS  Google Scholar 

  9. Y. Ederle and C. Mathis, Macromolecules 30, 2546 (1997).

    Article  CAS  Google Scholar 

  10. Y. Ederle and C. Mathis, Synth. Met. 86, 2275 (1997).

    Article  CAS  Google Scholar 

  11. E. Yu. Melenevskaya, L. V. Vinogradova, L. S. Litvinova, E. E. Kever, L. A. Shibaev, T. A. Antonova, E. N. Bykova, S. I. Klenin, and V. N. Zgonnik, Polymer Science, Ser. A 40, 115 (1998).

    Google Scholar 

  12. L. V. Vinogradova, E. Yu. Melenevskaya, E. E. Kever, and V. N. Zgonnik, Polymer Science, Ser. A 42, 137 (2000).

    Google Scholar 

  13. C. Picot, F. Audouin, and C. Mathis, Macromolecules 40, 1643 (2007).

    Article  CAS  Google Scholar 

  14. C. M. Marques, D. Izzo, T. Charitat, and E. Mendes, Eur. Phys. J. 3, 353 (1998).

    CAS  Google Scholar 

  15. V. Weber, M. Duval, Y. Ederle, and C. Mathis, Carbon 36, 839 (1998).

    Article  CAS  Google Scholar 

  16. P. N. Lavrenko and L. V. Vinogradova, Polymer Science, Ser. A 42, 117 (2000).

    Google Scholar 

  17. L. V. Vinogradova, E. E. Kever, and A. P. Filippov, Polymer Science, Ser. A 51, 174 (2009).

    Article  Google Scholar 

  18. A. P. Filippov, O. A. Romanova, and L. V. Vinogradova, Polymer Science, Ser. A 52, 221 (2010).

    Article  Google Scholar 

  19. R. P. Quirk and Y. Tsai, Macromolecules 31, 8016 (1998).

    Article  CAS  Google Scholar 

  20. A. Lebreton, J. K. Kallitsis, V. Herogues, and Y. Gnanou, Macromol. Symp. 215, 41 (2004).

    Article  CAS  Google Scholar 

  21. R. Matmour, A. Lebreton, C. Tsitsilianis, I. Kallitsis, V. Herogues, and Y. Gnanou, Angew. Chem. 117, 288 (2005).

    Article  Google Scholar 

  22. A. A. Tager, Physical Chemistry of Polymers, Ed. by A. A. Askadskii (Nauchnyi Mir, Moscow, 2007) [in Russian].

    Google Scholar 

  23. M. Rawiso, J. Phys. IV 9, 174 (1999).

    Google Scholar 

  24. A. Guinier and G. Fournet, Small-Angle Scattering of X-Rays (Wiley, New York, 1955).

    Google Scholar 

  25. A. V. Eletskii and B. M. Smirnov, Usp. Fiz. Nauk 165, 977 (1995).

    Article  CAS  Google Scholar 

  26. A. E. Nesterov and Yu. S. Lipatov, Thermodynamics of Polymer Solutions and Blends (Naukova Dumka, Kiev, 1984), Vol. 1 [in Russian].

    Google Scholar 

  27. D. I. Svergun and L. A. Feigin, Small-Angle X-Ray and Neutron Scattering (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  28. D. I. Svergun, J. Crystallogr. 25, 495 (1992).

    Article  Google Scholar 

  29. D. Torok, V. T. Lebedev, and L. Cher, Fiz. Tverd. Tela (S.-Peterburg) 44, 546 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Lebedev.

Additional information

Original Russian Text © V.T. Lebedev, Gy. Török, L.V. Vinogradova, 2013, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2013, Vol. 55, No. 1, pp. 35–42.

This work was supported by the Russian Foundation for Basic Research, project no. 10-03-00191a.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, V.T., Török, G. & Vinogradova, L.V. Structural features of fullerene-containing star-shaped polystyrene molecules with Oligomer arms in solutions. Polym. Sci. Ser. A 55, 32–38 (2013). https://doi.org/10.1134/S0965545X13010033

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X13010033

Keywords

Navigation