Skip to main content
Log in

Effect of preparation conditions on nanostructural features of the NAFION® type perfluorinated proton conducting membranes

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Features of the fine structure of three samples of perfluorinated Nafion® type membranes—Nafion-115, its Russian analogue MF-4SK, and a new similar material PFM-E produced according to our novel water-emulsion technique—have been characterized using the small-angle neutron scattering technique. A difference in the regularity of common elements of fine structure (cylindrical channels) in the membranes has been revealed. Nafion-115 has the most regular structure with a diffraction peak corresponding to the double channel diameter and an additional broad maximum in the scattering curve indicating a long-range order in the arrangement of straight cylindrical channels. For MF-4SK, in addition, twisted and less ordered channels have been observed. In the PFM-E sample channels have a tortuous and branched structure with diameters similar to Nafion-115. Only a short-range order (40–50 Å) in the arrangement of the channels has been detected, and correlation in their mutual orientation at longer distances is weakened. It has been supposed that the observed branched structure of the channels promotes an increase in water content and an improvement in proton conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Ivanchev and S. V. Myakin, Usp. Khim. 79, 89 (2010).

    Article  Google Scholar 

  2. W. Y. Hsu and T. J. Gierke, J. Membr. Sci. 13, 307 (1983).

    Article  CAS  Google Scholar 

  3. H. G. Haubold, T. Vad, H. Jungbluth, and P. Hiller, Electrochim. Acta 46, 1559 (2001).

    Article  CAS  Google Scholar 

  4. L. Rubatat, G. Gebel, and O. Diat, Macromolecules 37, 7772 (2004).

    Article  CAS  Google Scholar 

  5. A. Venkatnathan, R. Devanathan, and M. Dupuis, J. Phys. Chem. B 111, 7234 (2007).

    Article  CAS  Google Scholar 

  6. www.fuelcelltoday.com/FuelcellToday/Industry Directory/Industry Directory External/Industri Directory DisplayCompany/04591.2234.00.html (2005).

  7. D. Garrain, J. Lechon, and C. de la Rua, Smart Grid Renew. Energy 2, 68 (2011).

    Article  CAS  Google Scholar 

  8. O. D. Selivanov, Dvigatel’, No. 5 (2010).

  9. S. S. Ivanchev, V. S. Likhomanov, O. N. Primachenko, et al., Membr. Membr. Tekhnol. 2(1), 3 (2012).

    Google Scholar 

  10. S. S. Ivanchev, V. S. Likhomanov, O. N. Primachenko, et al., Dokl. Akad. Nauk 437, 344 (2011).

    Google Scholar 

  11. S. S. Ivanchev, V. S. Misin, V. N. Pavlyuchenko, et al., RU Patent No. 2348649; Byull. Izobret., No. 7 (2009).

  12. G. Gebel, Macromolecules 33, 4850 (2000).

    Article  CAS  Google Scholar 

  13. A. L. Rollet, O. Diat, and G. Gebel, J. Phys. Chem. B 2002, 3033 (2002).

    Article  Google Scholar 

  14. G. Gebel and O. Diat, Fuel Cells 5, 261 (2005).

    Article  CAS  Google Scholar 

  15. K. Schmidt-Rohr and Q. Chen, Nat. Mater. 7, 75 (2008).

    Article  CAS  Google Scholar 

  16. A. Siu, J. Schmeisser, and S. Holdcroft, J. Phys. Chem. B 110, 6072 (2006).

    Article  CAS  Google Scholar 

  17. J. Hodakovska, J. Kleperis, L. Grinberga, and G. Vaivars, Russ. J. Electrochem. 45, 657 (2009).

    Article  CAS  Google Scholar 

  18. T. Peckham, J. Schmeisser, M. Rodgers, and S. Holdcroft, J. Mater. Chem. 17, 3255 (2007).

    Article  CAS  Google Scholar 

  19. R.-Q. Fu, L. Hong, and J.-Y. Lee, Fuel Cells 8, 52 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Kul’velis.

Additional information

Original Russian Text © Yu.V. Kul’velis, V.T. Lebedev, V.A. Trunov, O.N. Primachenko, S.Ya. Khaikin, D. Torok, S.S. Ivanchev, 2012, published in Membrany i membrannye tekhnologii, 2012, Vol. 2, No. 3, pp. 179–185.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kul’velis, Y.V., Lebedev, V.T., Trunov, V.A. et al. Effect of preparation conditions on nanostructural features of the NAFION® type perfluorinated proton conducting membranes. Pet. Chem. 52, 565–570 (2012). https://doi.org/10.1134/S0965544112080105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544112080105

Keywords

Navigation