Skip to main content
Log in

Numerical solution of seismic exploration problems in the Arctic region by applying the grid-characteristic method

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The goal of this paper is the numerical solution of direct problems concerning hydrocarbon seismic exploration on the Arctic shelf. The task is addressed by solving a complete system of linear elasticity equations and a system of acoustic field equations. Both systems are solved by applying the grid-characteristic method, which takes into account all wave processes in a detailed and physically correct manner and produces a solution near the boundaries and interfaces of the integration domain, including the interface between the acoustic and linear elastic media involved. The seismograms and wave patterns obtained by numerically solving these systems are compared. The effect of ice structures on the resulting wave patterns is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Goodway and M. Enachescu, “Introduction to this special section: Arctic/ATC,” The Leading Edge 32 (5), 522–523 (2013).

    Article  Google Scholar 

  2. A. B. Baggeroer and G. L. Duckworth, “Seismic exploration in the Arctic Ocean,” The Leading Edge 2 (10), 22–27 (1983).

    Article  Google Scholar 

  3. D. C. Henley, “Attenuating the ice flexural wave on arctic seismic data,” SEG Technical Program Expanded Abstracts (2006), pp. 2757–2761.

    Google Scholar 

  4. R. Trupp, J. Hastings, S. Cheadle, and R. Vesely, “Seismic in arctic environs: Meeting the challenge,” The Leading Edge 28 (8), 936–942 (2009).

    Article  Google Scholar 

  5. D. C. Mosher, C. B. Chapman, J. Shimeld, H. R. Jackson, D. Chian, J. Verhoef, D. Hutchinson, N. Lebedeva-Ivanova, and R. Pederson, “High arctic marine geophysical data acquisition,” The Leading Edge 32 (5), 524–536 (2013).

    Article  Google Scholar 

  6. S. L. Rice, T. Dudley, C. Schneider, R. J. Pierce, B. Horn, S. Cameron, R. Bloor, and Z.-Z. J. Zhou, “Arctic seismic acquisition and processing,” The Leading Edge 32 (5), 546–554 (2013).

    Article  Google Scholar 

  7. B. R. Julian and D. Gubbins, “Three-dimensional seismic ray tracing,” J. Geophys. 43, 95–113 (1977).

    Google Scholar 

  8. A. Bermudez, L. Hervella-Nieto, and R. Rodriguez, “Finite element computation of three-dimensional elastoacoustic vibrations,” J. Sound Vibration 219 (2), 279–306 (1999).

    Article  MATH  Google Scholar 

  9. M. Kazer and M. Dumbser, “A highly accurate method for complex interfaces between solids and moving fluids,” Geophysics 73 (3), 723–725 (2008).

    Google Scholar 

  10. R. Van Vossen, J. O. A. Robertsson, and C. H. Chapman, “Finite-difference modeling of wave propagation in a fluid-solid configuration,” Geophysics 67 (2), 618–624 (2002).

    Article  Google Scholar 

  11. J. De la Puente, M. Kaser, M. Dumbser, and H. Igel, “An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes IV: Anisotropy,” Geophys. J. Int. 169, 1210–1228 (2007).

    Article  Google Scholar 

  12. G. Seriani, E. Priolo, J. M. Carcione, and E. Padovani, “High-order spectral element method for elastic wave modeling,” Extended Abstracts of the 62nd Annual International Meeting and Exposition (SEG, 1992), pp. 1285–1288.

    Google Scholar 

  13. A. Levander, “Fourth-order finite-difference P-SV seismograms,” Geophysics 53 (11), 1425–1436 (1988).

    Article  Google Scholar 

  14. S. Vlastos, E. Liu, I. G. Main, and X.-Y. Li, “Numerical simulation of wave propagation in media with discrete distributions of fractures: Effect of fracture size and spatial distributions,” Geophys. J. Int. 152 (3), 649–668 (2003).

    Article  Google Scholar 

  15. A. V. Favorskaya, I. B. Petrov, A. V. Sannikov, and I. E. Kvasov, “Grid-characteristic method using high order interpolation on tetrahedral hierarchical meshes with a multiple time step,” Math. Models Comput. Simul. 5 (5), 409–415 (2013).

    Article  Google Scholar 

  16. A. V. Favorskaya, D. I. Petrov, I. B. Petrov, and N. I. Khokhlov, “Numerical solution of arctic problems by applying the grid-characteristic method,” Izv. Yuzh. Fed. Univ. Tekh. Nauki, No. 12, 192–200 (2014).

    Google Scholar 

  17. V. I. Golubev, I. B. Petrov, and N. I. Khokhlov, “Numerical simulation of seismic activity by the grid-characteristic method,” Comput. Math. Math. Phys. 53 (10), 1523–1533 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. K. M. Magomedov and A. S. Kholodov, Grid-Characteristic Numerical Methods (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  19. I. B. Petrov and A. S. Kholodov, “Numerical study of some dynamic problems of the mechanics of a deformable rigid body by the mesh-characteristic method,” USSR Comput. Math. Math. Phys. 24 (3), 61–73 (1984).

    Article  MATH  Google Scholar 

  20. I. B. Petrov and A. S. Kholodov, “Regularization of discontinuous numerical solutions of equations of hyperbolic type,” USSR Comput. Math. Math. Phys. 24 (4), 128–138 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  21. I. B. Petrov, A. G. Tormasov, and A. S. Kholodov, “On the use of hybrid grid-characteristic schemes for the numerical solution of three-dimensional problems in the dynamics of a deformable solid,” USSR Comput. Math. Math. Phys. 30 (4), 191–196 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  22. I. E. Kvasov and I. B. Petrov, “High-Performance computer simulation of wave processes in geological media in seismic exploration,” Comput. Math. Math. Phys. 52 (2), 302–313 (2012).

    Article  MATH  Google Scholar 

  23. W. Nowacki, Teoria Sprezystosci (Panstwowe Wydawnictwo Naukowe, Warsaw, 1970; Mir, Moscow, 1975).

    MATH  Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, Oxford, 1986; Nauka, Moscow, 1987).

    MATH  Google Scholar 

  25. A. V. Favorskaya, I. B. Petrov, and K. A. Beklemysheva, “Numerical simulation of processes in solid deformable media in the presence of dynamic contacts using the grid-characteristic method,” Math. Models Comput. Simul. 6 (3), 294–304 (2014).

    Article  Google Scholar 

  26. V. I. Golubev, “Method for visualizing and interpreting results of full-wave seismic computations,” Tr. Mosk. Fiz.-Tekh. Inst. 6 (1), 154–161 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Petrov.

Additional information

Dedicated to the memory of O.M. Belotserkovskii

Original Russian Text © D.I. Petrov, I.B. Petrov, A.V. Favorskaya, N.I. Khokhlov, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 6, pp. 1149–1163.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, D.I., Petrov, I.B., Favorskaya, A.V. et al. Numerical solution of seismic exploration problems in the Arctic region by applying the grid-characteristic method. Comput. Math. and Math. Phys. 56, 1128–1141 (2016). https://doi.org/10.1134/S0965542516060208

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516060208

Keywords

Navigation