Skip to main content
Log in

Identification of proteins of cardiovascular system in healthy subjects’ urine during “dry” immersion

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

We analyzed the urine proteome in 14 healthy volunteers who were subjected to 5-day dry immersion using proteomic analysis methods and bioinformatics approach. We identified nine proteins related to the cardiovascular system. It was shown that 5-day dry immersion modifies the urine proteomic profile, indicating renal, endocrine, circulatory, and metabolic changes. Most of these changes are characterized by both a very rapid development and very rapid restoration within return to normal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shul’zhenko, I.B. and Vil’-Vil’yams, I.F., Possibility of realization of long-term water immersion by the dry immersion method, Kosm. Biol. Aviakosm. Med., 1976, vol. 10, no. 2, p. 32.

    Google Scholar 

  2. Grigor’ev, A.I., Osmoregulatory function of kidneys in immersion, Fiziol. Zh. SSSR, 1978, vol. 4, no. 3, p. 389.

    Google Scholar 

  3. Larina, I.M., Sukhanov, Yu.V., and Lakota, N.G., Mechanisms of early responses of water and electrolyte metabolism in humans in various terrestrial models of microgravity, Kosm. Biol. Aviakosm. Med., 1999, vol. 33, no. 4, p. 17.

    CAS  Google Scholar 

  4. Larina, I.M., Kusto, M.A., Pastushkova, L.Kh., et al., The state of water and electrolyte metabolism and functions of kidneys and skin microvasculature examined during 7-day dry immersion, Kosm. Biol. Aviakosm. Med., 2008, vol. 42, no. 5, p. 29.

    CAS  Google Scholar 

  5. Kozlovskaya, I.B., Fundamental and applied problems of immersion studies, Kosm. Biol. Aviakosm. Med., 2008, vol. 42, no. 5, p. 3.

    Google Scholar 

  6. Tomilovskaya, E.S., Experiment with a 5-day immersion: tasks, scope, research structure, and characteristics of methodological approaches, Kosm. Biol. Aviakosm. Med., 2011, vol. 45, no. 6, p. 3.

    Google Scholar 

  7. Ivanov, G.G., Baevskii, R.M., Bersen’ev, E.Yu., et al., Indicators of dispersion mapping of ECG under exposure to dry immersion, Kosm. Biol. Aviakosm. Med., 2011, vol. 45, no. 6, p. 44.

    CAS  Google Scholar 

  8. Bart, V., Beckers, F., Couckuyt, K., et al., Dynamic cardiovascular control during one hour of thermoneutral headout of water immersion, in 16th IAA Humans in Space Symposium, May 21–24, Bejing, China, 2007, p. 233.

    Google Scholar 

  9. Kudrin, K.A., Hemodynamic changes in the early period of adaptation to simulated microgravity and their prevention, Cand. Sci. (Med.) Dissertation, Moscow, 1983.

    Google Scholar 

  10. Vasil’eva, T.D., Yarullin, Kh.Kh., and Zhuiko, V.I., Age-related features of the state of regional hemodynamics of astronauts, Kosm. Biol. Aviakosm. Med., 1981, vol. 15, no. 5, p. 61.

    PubMed  Google Scholar 

  11. Eshmanova, A.K., Heart rate variability and the myocardium state under exposure to dry immersion, Extended Abstract of Cand. Sci. (Med.) Dissertation, Moscow, 2009.

    Google Scholar 

  12. Larina, I.M., Pastushkova, L.Kh., Kusto, M.A., et al., Seven-day dry immersion: interrelationship between the changes in the water-electrolyte balance and cardiovascular responses, Hum. Phys., 2011, vol. 37, no. 5, p. 602.

    Article  Google Scholar 

  13. Larina, O.N., Bekker, A.M., and Umarkhodzhaev, R.M., Study of the reproducibility of the method of two-dimensional electrophoresis in cellulose acetate, Tekhnol. Zhivykh Sistem, 2006, vol. 3, no. 5-6, p. 20.

    CAS  Google Scholar 

  14. Trifonova, O.P., Pastushkova, L.Kh., Samenkova, N.F., et al., Changes in the protein composition of blood plasma in an experiment with a 7-day dry immersion, Kosm. Biol. Aviakosm. Med., 2010, vol. 44, no. 5, p. 24.

    Google Scholar 

  15. Kuzichkin, D.S., Morukov, B.V., Markin, A.A., et al., Cosmonauts haemostasis system indices after longterm and short-term space flights, in 17th IAA Humans in Space Symposium, Moscow, 2009, p. 75

    Google Scholar 

  16. Markin, A.A., Morukov, B.V., Zhuravleva, O.A., et al., Dynamics of blood biochemical parameters in an experiment with a 7-day dry immersion, Kosm. Biol. Aviakosm. Med., 2008, vol. 42, no. 5, p. 56.

    CAS  Google Scholar 

  17. Pakharukova, N.A., Pastushkova, L.Kh., Larina, I.M., and Grigoriev, A.I., Changes of human serum proteome profile during 7-day “dry” immersion, Acta Astronaut., 2011, vol. 68, p. 1523.

    Article  CAS  Google Scholar 

  18. Pastushkova, L.Kh., Pakharukova, N.A., Novoselova, N.M., et al., Direct proteomic profiling of urine and human serum in an experiment with a 5-day dry immersion, Kosm. Biol. Aviakosm. Med., 2012, vol. 46, no. 4, p. 31.

    Google Scholar 

  19. Valeeva, O.A., Pastushkova, L.Kh., Pakharukova, N.A., et al., Variability of urine proteome in healthy humans during a 105-day isolation in a pressurized compartment, Hum. Phys., 2011, vol. 37, no. 3, p. 351.

    Article  CAS  Google Scholar 

  20. Ishihama, Y., Rappsilber, J., Andersen, J.S., and Mann, M., Microcolumns with self-assembled particle frits for proteomics, J. Chromatogr., 2002, vol. 979, p. 233.

    Article  CAS  Google Scholar 

  21. Avtonomov, D.M., Agron, I.A., Kononikhin, A.S., et al., A new method for normalization of the peptide retention times in chromatographic/mass-spectrometric experiments, Russ. J. Bioorg. Chem., 2011, vol. 37, no. 2, p. 146.

    Article  CAS  Google Scholar 

  22. Magrane, M. and Consortium, U., UniProt Knowledgebase: A Hub of Integrated Protein Data. Database (Oxford), 2011, bar 009.

    Google Scholar 

  23. Liu, X., Yu, X., Zack, D.J., et al., TiGER: a database for tissue-specific gene expression and regulation, BMC Bioinformatics, 2008, vol. 9, p. 271.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Campia, U., Tesauro, M., and Cardillo, C., Human obesity and endothelium-dependent responsiveness, Br. J. Pharmacol., 2012, vol. 165, no. 3, p. 561.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Tarzia, P., Milo, M., Di Franco, A., et al., Effect of shift work on endothelial function in young cardiology trainees, Eur. J. Prev. Cardiol., 2012, vol. 19, no. 5, p. 908.

    Article  PubMed  Google Scholar 

  26. Arinell, K., Christensen, K., Blanc, S., et al., Effect of prolonged standardized bed rest on cystatin C and other markers of cardiovascular risk, BMC Physiol., 2011, p. 11.

    Google Scholar 

  27. Slama, P. and Geman, D., Identification of familydetermining residues in PHD fingers, Nucleic Acids Res., 2011, vol. 39, no. 5, p. 1666.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Scumaci, D., Gaspari, M., Saccomanno, M., et al., Assessment of an ad hoc procedure for isolation and characterization of human albuminome, Anal. Biochem., 2011, vol. 418, no. 1, p. 161.

    Article  CAS  PubMed  Google Scholar 

  29. Savoia, C., Sada, L., Zezza, L., et al., Vascular inflammation and endothelial dysfunction in experimental hypertension, Int J. Hypertens., 2011, p. 281240.

    Google Scholar 

  30. Demenkov, P.S., Aman, E.E., and Ivanisenko, V.A., AssociativeNetworkDiscovery (AND)—a computer system for automatic reconstruction of a network of associative knowledge about the molecular-genetic interactions, Vych. Tekhnol., 2008, vol. 1, no. 1, p. 47.

    Google Scholar 

  31. Lu, J., Stewart, A.J., Sadler, P.J., et al., Albumin as a zinc carrier: properties of its high-affinity zinc-binding site, Biochem. Soc Trans., 2008, vol. 36,part 6, p. 1317.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, W.D., Deng, C., Long, H.B., et al., Effects of alpha-keto acid on the expression of neuropeptide Y in malnutrition rats with chronic renal failure, Nan Fang Yi Ke Da Xue Xue Bao, 2009, vol. 29, no. 7, p. 1387.

    CAS  PubMed  Google Scholar 

  33. Tojo, A. and Kinugasa, S., Mechanisms of glomerular albumin filtration and tubular reabsorption, Int J. Nephrol., 2012, p. 481520.

    Google Scholar 

  34. Erridge, C., Pridmore, A., Eley, A., et al., Lipopolysaccharides of Bacteroids fragilis, Chlamydia trachomatis, and Pseudomonas aeruginosa signal via Toll-like receptor 2, J. Med. Microbiol., 2004, vol. 53,pt. 8, p. 735.

    Article  CAS  PubMed  Google Scholar 

  35. Chatzidaki-Livanis, M., Hubbard, M.A., Gordon, K., et al., Genetic distinctions among clinical and environmental strains of Vibrio vulnificus, Appl. Environ. Microbiol., 2006, vol. 72, no. 9, p. 6136.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Chang, A.K., Kim, H.Y., Park, J.E., et al., Vibrio vulnificus secretes a broad-specificity metalloprotease capable of interfering with blood homeostasis through prothrombin activation and fibrinolysis, J. Bacteriol., 2005, vol. 187, no. 20, p. 6909.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Rubenstein, D.A. and Yin, W., Glycated albumin modulates platelet susceptibility to flow induced activation and aggregation, Platelets, 2009, vol. 20, no. 3, p. 206.

    Article  CAS  PubMed  Google Scholar 

  38. De Serres, S.A., Varghese, J.C., and Levin, A., Biomarkers in native and transplant kidneys: opportunities to improve prediction of outcomes in chronic kidney disease, Curr. Opin. Nephrol. Hypertens., 2012, vol. 21, no. 6, p. 619.

    Article  PubMed  Google Scholar 

  39. Cirillo, M., De Santo, N.G., Heer, M., et al., Low urinary albumin excretion in astronauts during space missions, Nephron. Physiol., 2003, vol. 93, no. 4, p. 102.

    Article  Google Scholar 

  40. Leach, C.S., Altschuler, S.I., and Cintron-Trevino, N.M., The endocrine and metabolic responses to spaceflight, Med. Sci Sports Exerc., 1983, vol. 1S, p. 432.

    Google Scholar 

  41. Markin, A.A. and Zhuravleva, O.A., Biochemical blood studies: postflight clinical and physiological studies, in Orbital’naya stantsiya “Mir” (Mir Orbital Station), Moscow: Anikom, 2001, vol. 1, p. 606.

    Google Scholar 

  42. Vorontsov, A.L., Nesterovskaya, A.Yu., Morukov, B.V., et al., The protein composition of urine in humans during 5-day immersion, Kosm. Biol. Aviakosm. Med., 2011, vol. 45, no. 6, p. 18.

    CAS  Google Scholar 

  43. Zemchenkov, A.Yu. and Gerasimchuk, R.P., Vitamin D receptor activators and vascular calcification, Nefrol. Dializ, 2009, no. 4, p. 276.

    Google Scholar 

  44. Coen, G., Ballanti, P., Silvestrini, G., et al., Immunohistochemical localization and mRNA expression of matrix Gla protein and fetuin-A in bone biopsies of hemodialysis patients, Virchows Arch., 2009, vol. 454, no. 3, p. 263.

    Article  CAS  PubMed  Google Scholar 

  45. Gromova, O.A., Torshin, I.Yu., Tomilova, I.K., and Oshchepkova, E.V., Is it possible to prevent vascular calcification by calcium and vitamin D3 medications, Zemskii Vrach, 2011, no. 3, p. 17.

    Google Scholar 

  46. Westenfeld, R., Schäfer, C., Krüger, T., et al., Fetuin-A protects against atherosclerotic calcification in CKD, J. Am. Soc. Nephrol., 2009, vol. 20, no. 6, p. 1264.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Wilund, K.R., Tomayko, E.J., Evans, E.M., et al., Physical activity, coronary artery calcium, and bone mineral density in elderly men and women: a preliminary investigation, Metabolism, 2008, vol. 57, no. 4, p. 584.

    Article  CAS  PubMed  Google Scholar 

  48. Mori, K., Emoto, M., and Inaba, M., Fetuin-A and the cardiovascular system, Adv. Clin. Chem., 2012, vol. 56, p. 175.

    Article  CAS  PubMed  Google Scholar 

  49. Ix, J.H., Katz, R., Kestenbaum, B.R., et al., Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (cardiovascular health study), J. Am. Coll. Cardiol., 2012, vol. 60, no. 3, p. 200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Coupe, M., Tomilovskaya, E., Larcher, F., et al., Body fluid changes, cardiovascular deconditioning and metabolic impairment are reversed 24 hours after a 5-day dry immersion, J. of Nephrology (O J Neph.), 2013, vol. 3, no. 1, p. 13.

    Google Scholar 

  51. Pucci, L., Triscornia, S., Lucchesi, D., et al., Cystatin C and estimates of renal function: searching for a better measure of kidney function in diabetic patients, Clin. Chem., 2007, no. 3, p. 480.

    Google Scholar 

  52. Villeval’de, S.V., Gudgalis, N.I., Isikova, Kh.V., et al., The role of cystatin C in the evaluation of the relationship of renal function and inflammation in patients with hypertension and type 2 diabetes, Klin. Farmakol. Terap., 2009, no. 1, p. 21.

    Google Scholar 

  53. Kharchenko, M.S., Erlikh, A.D., Kosenkov, E.I., et al., Addition of the level of cystatin C to count the points on the GRACE scale improves the accuracy of risk assessment of bleeding in noninvasively treated patients with acute coronary syndrome, Kardiovask. Terap. Profilakt., 2012, vol. 11, no. 6, p. 38.

    Google Scholar 

  54. Manzano-Fernández, S., López-Cuenca, A., Januzzi, J.L., et al., Usefulness of β-trace protein and cystatin C for the prediction of mortality in non ST segment elevation acute coronary syndromes, Am. J. Cardiol., 2012, vol. 110, no. 9, p. 1240.

    Article  PubMed  Google Scholar 

  55. Nead, K.T., Zhou, M.J., Caceres, R.D., et al., Usefulness of the addition of beta-2-microglobulin, cystatin C and C-reactive protein to an established risk factors model to improve mortality risk prediction in patients undergoing coronary angiography, Am. J. Cardiol., 2013, vol. 111, no. 6, p. 851.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Cheng, X.W., Kuzuya, M., Nakamura, K., et al., Localization of cysteine protease, cathepsin S, to the surface of vascular smooth muscle cells by association with integrin alphanubeta3, Am. J. Pathol., 168, no. 2, p. 685.

  57. Agiostratidou, G., Agiostratidou, G., Muros, R.M., et al., The cytoplasmic sequence of E-cadherin promotes non-amyloidogenic degradation of A beta precursors, J. Neurochem., 2006, vol. 96, p. 1182.

    Article  CAS  PubMed  Google Scholar 

  58. Kuefer, R., Hofer, M.D., Gschwend, J.E., et al., The role of an 80 kDa fragment of E-cadherin in the metastatic progression of prostate cancer, Clin. Cancer. Res., 2003, vol. 9, p. 6447.

    CAS  PubMed  Google Scholar 

  59. Chan, A.O., Chu, K.M., Lam, S.K., et al., Soluble Ecadherin is an independent pretherapeutic factor for long-term survival in gastric cancer, J. Clin. Oncol., 2003, vol. 21, p. 2288.

    Article  CAS  PubMed  Google Scholar 

  60. Riaz, S., Alam, S.S., Srai, S.K., et al., Proteomic identification of human urinary biomarkers in diabetes mellitus type 2, Diabetes Technol. Ther., 2010, vol. 12, no. 12, p. 979.

    Article  CAS  PubMed  Google Scholar 

  61. Andersen, R.F., Palmfeldt, J., Jespersen, B., et al., Plasma and urine proteomic profiles in childhood idiopathic nephrotic syndrome, Proteomics Clin. Appl., 2012, vol. 6, p. 382.

    Article  CAS  PubMed  Google Scholar 

  62. Tani, T., Laitinen, L., Kangas, L., et al., Expression of E- and N-cadherin in renal cell carcinomas, in renal cell carcinoma cell lines in vitro and in their xenografts, Int. J. Cancer, 1995, vol. 64, p. 407.

    Article  CAS  PubMed  Google Scholar 

  63. Gromova, O.A. and Torshin, I.Yu., Physiological model of the relationship of vitamin D3 with oncological diseases: evidence-based medicine data, Klin. Nutritsiol., 2009, no. 2, p. 41.

    Google Scholar 

  64. Lind, L., Hänni, A., Lithell, H., et al., Vitamin D is related to blood pressure and other cardiovascular risk factors in middle-aged men, Am. J. Hypertens., 1995, vol. 8, no. 9, p. 894.

    Article  CAS  PubMed  Google Scholar 

  65. Shikh, E.V. and Milotova, N.M., Role of polymorphism of the VDR gene encoding the receptor of vitamin D in the pathogenesis of hypertension, Biomeditsina, 2009, no. 1, p. 55.

    Google Scholar 

  66. Pilz, S., Tomaschitz, A., Drechsler, C., et al., Vitamin D deficiency and myocardial diseases, Mol. Nutr. Food Res., 2010, vol. 54, no. 8, p. 1103.

    CAS  PubMed  Google Scholar 

  67. Artaza, J.N., Sirad, F., Ferrini, M.G., and Norris, K.C., 1,25(OH)2 vitamin D3 inhibits cell proliferation by promoting cell cycle arrest without inducing apoptosis and modifies cell morphology of mesenchymal multipotent cells, J. Steroid Biochem. Mol. Biol., 2010, vol. 119, p. 73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Mitsuhashi, T., Morris, R.C., Jr., and Ives, H.E., 1,25-Dihydroxyvitamin D3 modulates growth of vascular smooth muscle cells, J. Clin. Invest., 1991, vol. 87, no. 6, p. 1889.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Aihara, K., Azuma, H., and Takamori, N., Heparin cofactor II is a novel protective factor against carotid atherosclerosis in elderly individuals, Circulation, 2004, vol. 109, no. 22, p. 2761.

    Article  CAS  PubMed  Google Scholar 

  70. Huang, N.F., Lee, R.J., and Li, S., Engineering of aligned skeletal muscle by micropatterning, Am J. Transl. Res., 2010, vol. 2, no. 1, p. 43.

    PubMed Central  PubMed  Google Scholar 

  71. Xiang, W., Kong, J., Chen, S., et al., Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems, Am. J. Physiol. Endocrinol. Metab., 2005, vol. 288, no. 1, p. 125.

    Article  Google Scholar 

  72. Gonzalez, E.M., Reed, C.C., Bix, G., et al., Bmp-1/tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan, J. Biol. Chem., 2005, vol. 280, no. 8, p. 7080.

    Article  CAS  PubMed  Google Scholar 

  73. Parker, T.J., Sampson, D.L., and Broszczak, D., A fragment of the LG3 peptide of endorepellin is present in the urine of physically active mining workers: a potential marker of physical activity, PLoS One, 2012, vol. 7, no. 3, p. 33714.

    Article  Google Scholar 

  74. Surin, B., Sachon, E., Rougier, J.P., et al., Lg3 fragment of endorepellin is a possible biomarker of severity in IgA nephropathy, Proteomics, 2013, vol. 13, no. 1, p. 142.

    Article  CAS  PubMed  Google Scholar 

  75. Zheleznova, N.N., Wilson, P.D., and Staruschenko, A., Epidermal growth factor-mediated proliferation and sodium transport in normal and PKD epithelial cells, Biochim. Biophys. Acta, 2011, no. 10, p. 301.

    Google Scholar 

  76. Sibilia, M., Kroismayr, R., Lichtenberger, B.M., et al., The epidermal growth factor receptor: from development to tumorigenesis, Differentiation, 2007, vol. 75, no. 9, p. 770.

    Article  CAS  PubMed  Google Scholar 

  77. Thebault, S., Alexander, R.T., Tiel Groenestege, W.M., et al., EGF increases TRPM6 activity and surface expression, J. Am. Soc. Nephrol., 2009, vol. 20, no. 1, p. 78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Groenestege, W.M., Thébault, S., van der Wijst, J., et al., Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia, J. Clin. Invest., 2007, no. 8, p. 2260.

    Google Scholar 

  79. Al Moustafa, A.E., Achkhar, A., and Yasmeen, A., Front. Biosci. (Schol. Ed.), 2012, p. 671.

    Google Scholar 

  80. Nagaraj, N. and Mann, M., Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome, J. Proteome Res., 2011, vol. 10, no. 2, p. 637.

    Article  CAS  PubMed  Google Scholar 

  81. Glogowska, A., Stetefeld, J., Weber, E., et al., Epidermal growth factor cytoplasmic domain affects ErbB protein degradation by the lysosomal and ubiquitinproteasome pathway in human cancer cells, Neoplasia, 2012, vol. 14, no. 5, p. 396.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Chen, Z.B., Huang, D.Q., Niu, F.N., et al., Human urinary kallidinogenase suppresses cerebral inflammation in experimental stroke and downregulates nuclear factor-kappa B, J. Cereb. Blood Flow Metab., 2010, vol. 30, no. 7, p. 1356.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Ponticelli, C. and Meroni, P.L., Kallikreins and lupus nephritis, J. Clinin. Invest., 2009, vol. 119, no. 4, p. 768.

    Article  CAS  Google Scholar 

  84. Yao, Y., Sheng, Z., Li, Y., et al., Tissue kallikrein promotes cardiac neovascularization by enhancing endothelial progenitor cell functional capacity, Hum. Gene Ther., 2012, vol. 23, no. 8, p. 859.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Minushkina, L.O., Zateishchikova, A.A., Khotchenkova, N.V., et al., Activity of the renin-aldosterone system and the features of the structure and function of the left ventricular myocardium in hypertensive patients, Kardiologiya, 2000, no. 9, p. 23.

    Google Scholar 

  86. Larina, I.M., Popova, I.A., Mikhailov, V.M., and Buravkova, L.B., Hormonal mechanisms providing for muscular activity under conditions of prolonged antiorthostatic hypokinesia, Hum. Physiol., 1999, vol. 25, no. 3, p. 351.

    CAS  Google Scholar 

  87. Navasiolava, N.M., Dignat-George, F., Sabatier, F., et al., Enforced physical inactivity increases endothelial microparticle levels in healthy volunteers, Am. J. Physiol. Heart Circ. Physiol., 2010, vol. 299, no. 2, p. 248.

    Article  Google Scholar 

  88. Zufferey, P., Bulliard, C., Gremion, G., et al., Systemic effects of epidural methylprednisolone injection on glucose tolerance in diabetic patients, BMC Res. Notes, 2011, no. 4, p. 552.

    Google Scholar 

  89. Ozkor, M.A. and Quyyumi, A.A., Endotheliumderived hyperpolarizing factor and vascular function, Cardiol. Res. Pract., 2011, p. 146.

    Google Scholar 

  90. Liao, J. and Farmer, J.A., Statins as adjunctive therapy in the management of hypertension, Curr. Atheroscler. Rep., 2010, vol. 12, no. 5, p. 349.

    Article  CAS  PubMed  Google Scholar 

  91. Yu, H., Song, Q., Freedman, B.I., et al., Association of the tissue kallikrein gene promoter with ESRD and hypertension, Kidney Int., 2002, vol. 61, no. 3, p. 1030.

    Article  CAS  PubMed  Google Scholar 

  92. Villanueva, J., Shaffer, D.R., Philip, J., et al., Differential exoprotease activities confer tumor-specific serum peptidome patterns, J. Clin. Invest., 2006, vol. 116, no. 1, p. 271.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Murphey, L.J., Hachey, D.L., Oates, J.A., et al., Metabolism of bradykinin in vivo in humans: identification of BK1-5 as a stable plasma peptide metabolite, J. Pharmacol. Exp. Ther., 2000, vol. 294, no. 1, p. 263.

    CAS  PubMed  Google Scholar 

  94. Sharma, J.N., The kinin system in hypertensive pathophysiology, Inflammopharmacology, 2013, vol. 21, no. 1, p. 1.

    Article  CAS  PubMed  Google Scholar 

  95. Yarovaya, G.A., Bioregulatory functions and pathogenetic role of proteolysis, Lab. Med., 2002, no. 5, p. 39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Kh. Pastushkova.

Additional information

Original Russian Text © L.Kh. Pastushkova, I.V. Dobrokhotov, O.M. Veselova, E.S. Tiys, A.S. Kononikhin, A.M. Novosiolova, M. Coupe, M.-A. Custaud, I.M. Larina, 2014, published in Fiziologiya Cheloveka, 2014, Vol. 40, No. 3, pp. 109–119.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastushkova, L.K., Dobrokhotov, I.V., Veselova, O.M. et al. Identification of proteins of cardiovascular system in healthy subjects’ urine during “dry” immersion. Hum Physiol 40, 330–339 (2014). https://doi.org/10.1134/S0362119714030128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119714030128

Keywords

Navigation