Skip to main content
Log in

Features of the organization of the cerebral cortex bioelectric potentials and visceral state in neurotic depression

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Studies were conducted with the participation of 20 patients with different classical variants of neurotic depression. The spatial organization of the bioelectrical activity of the brain was studied with the method of cross-correlation and coherent analysis. The autonomic-visceral state was assessed by the results of the auricular cryoreflex test (measurement of the cold sensibility of auricular points). The clinical picture of neurotic depression was shown to be reflected in the structure of the EEG spatial organization, which is modified depending on the degree of neurotic depression and the concomitant anxiety and asthenic syndromes. In the group with depressive syndrome without concomitant asthenic or anxiety manifestations, most changes were revealed in the right frontotemporal-left posterotemporal region. A cross-correlation and coherence decrease in the frontotemporal regions of both hemispheres and markedly increased cross-correlations in the right posterotemporal region were revealed in the depression + associated anxiety group. In the group where the depressive and anxiety syndromes were associated with marked asthenic manifestations, decreased cross-correlation and coherent relations in the frontotemporal regions of both hemispheres were observed. The clinical picture of neurotic disorders is reflected in a specific pattern of variations in the spatial organization of electrical activity of the cerebral cortex and in variations in the autonomic visceral state parameters. The development of negative emotional states in humans is accompanied by changes in the visceral functions. Variations in the central brain structures involve the zones of representation of emotional reactions and the zones of cortical representation of the organs. Insignificant central variations may cause autonomic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chernigovskii, V.N., Intertseptsiya (Interception), Leningrad: Nauka, 1985.

    Google Scholar 

  2. Vasserman, L.I., Il’ina, O.G., Mazo, G.E., and Ivanov, M.V., Neuropsychological Correlates of Depressive States in the Process of Psychopharmacotherapy, Klinicheskie Pavlovskie chteniya. Vypusk tretii “Depressiya” (Clinical Pavlov Readings, Issue 3: Depression), St. Petersburg, 2001.

  3. Nozdrachev, A.D., Baksenov, Yu.I., Barannikova, A.I., et al., Nachala fiziologii (The Principles of Physiology), St. Petersburg: Lan’, 2005.

    Google Scholar 

  4. Aziz, O., Schnitzler, A., and Enck, P., Functional Neuroimaging of Visceral Sensation, J. Clin. Neurophysiol., 2000, vol. 6, p. 604.

    Google Scholar 

  5. Hobson, A.R. and Aziz, O., Central Nervous System Processing of Human Visceral Pain in Health and Disease, News Physiol. Sci., 2003, vol. 18, p. 109.

    PubMed  Google Scholar 

  6. Beck, A.T., Ward, C.H., Mendelson, M., et al., An Inventory for Measuring Depression, Arch. Gen. Psychiatry, 1961, vol. 4, p. 561.

    Article  PubMed  CAS  Google Scholar 

  7. Bizyuk, A.P., Vasserman, L.I., and Iovlev, B.I., Primenenie integrativnogo testa trevozhnosti (ITT). Metodicheskie rekomendatsii (Application of the Integrative Anxiety Test (IAT). Recommendations on Methods), St. Petersburg, 1997.

  8. Bogdanov, N.N. and Makarov, A.K., Komp’yuternaya otsenka vegetativnogo statea metodom aurikulyarnogo kriorefleksotesta (Computer-Aided Assessment of the Autonomic State with the Auricular Cryoreflex Test), Moscow: St. Petersburg MAPO, 2003.

    Google Scholar 

  9. Strelets, V.B., Ivanitskii, A.M., and Ivanitskii, G.A., Disorganization of Cortical Processes in Depression, Zh. Vyssh. Nerv. Deyatel., 1996, vol. 46, no. 2, p. 274.

    CAS  Google Scholar 

  10. Cook, I.A., Hunter, A.M., Abrams, M., et al., Midline and Right Frontal Brain Function as a Physiologic Biomarker of Remission in Major Depression, Psychiatry Res., 2009, vol. 174(2), p. 152.

    Article  PubMed  Google Scholar 

  11. Davidson, R.J. and Sutton, S.K., Affective Neuroscience: The Emergence of a Discipline, Current Opin. Neurobiol., 1995, no. 5, p. 217.

  12. Deslands, A.C., de Moraes, H., Pompeu, F.A., et al., Electroencephalographic Frontal Asymmetry and Depressive Symptoms in Elderly, J. Biol. Psychol., 2008, vol. 79(3), p. 317.

    Article  Google Scholar 

  13. Matousek, M., EEG Patterns in Various Subgroups of Endogenous Depression, Int. J. Psychophysiol., 1991, vol. 10(3), p. 239.

    Article  PubMed  CAS  Google Scholar 

  14. Iznak, A.F., Electrophysiological Correlates of Psychogenic Disorders, Fiziol. Chel., 2007, vol. 33, no. 2, p. 137.

    CAS  Google Scholar 

  15. Mathersul, D., Williams, L.M., Hopkinson, P.J., and Kemp, A.H., Investigating Models of Affect: Relationships among EEG Alpha Asymmetry, Depression, and Anxiety, Emotion, 2008, vol. 8(4), p. 560.

    Article  PubMed  Google Scholar 

  16. Hunter, A.M., Leuchter, A.F., Cook, I.A., and Abrams, M., Brain Functional Changes (Q EEG Cordance) and Worsening Suicidal Ideation and Mood Symptoms during Antidepressant Treatment, Acta Psychiatr. Scand., 2010, vol. 122(6), p. 461.

    Article  PubMed  CAS  Google Scholar 

  17. Iosifesku, D.V., Grenwald, S., Devlin, P., et al., Frontal EEG Predictions of Treatment Outcome in Major Depressive Disorder, Eur. Neuropsychopharmacol., 2009, vol. 19(11), p. 772.

    Article  Google Scholar 

  18. Sviderskaya, N.E., Prudnikov, V.N., and Antonov, A.G., Features of the EEG Signs of Anxiety in Humans, Zh. Vyssh. Nerv. Deyatel., 2001, vol. 51, no. 2, p. 158.

    Google Scholar 

  19. Strelets, V.B. and Golikova, Zh.V., Psychophysiological Mechanisms of Stress in Individuals with a Different Markedness of Activation, Zh. Vyssh. Nerv. Deyatel., 2001, vol. 51, no. 2, p. 166.

    CAS  Google Scholar 

  20. Aftanas, L.I., Varlamov, A.A., Pavlov, S.V., et al., Reflection of the Emotion Sign in the Effects of Evoked EEG Synchronization and Desynchronization, Ross. Fiziol. Zh. im. I.M. Sechenova, 2002, vol. 88, no. 6, p. 790.

    PubMed  CAS  Google Scholar 

  21. Heller, W., Neurophysiological Mechanisms of Individual Differences in Emotion, Personality, and Arousal, Neuropsychiatry, 1993, vol. 7, no. 4, p. 476.

    Google Scholar 

  22. Ukraintseva, Yu.V. and Rusalova, M.N., Level of Personality Anxiety and Independence in Individuals with Different Spatial-Temporal Organization of Brain Bioelectric potentials, Zh. Vyssh. Nerv. Deyatel., 2004, vol. 54, no. 3, p. 331.

    Google Scholar 

  23. Ivonin, A.A., Tsitseroshin, M.N., Kutsenko, D.O., et al., Characteristics of Disturbances of Intercortical and Cortical-Subcortical Integration in Various Clinical Forms of Neurotic Depression, Hum. Physiol., 2008, vol. 34, no. 6, p. 660.

    Article  Google Scholar 

  24. Herrigton, J.D., Heller, W., Mohanty, A., et al., Localization of Asymmetric Brain Function in Emotion and Depression, Psychophysiology, 2010, vol. 47, p. 442.

    Article  Google Scholar 

  25. Verberne, A.J.M. and Owens, N.C., Cortical Modulation of the Cardiovascular System, Progress Neurobiol., 1998, vol. 54, p. 149.

    Article  CAS  Google Scholar 

  26. Schaepler, T.E., Frick, C., Zobel, A., et al., Vagus Nerve Stimulation for Depression: Efficacy and Safety in a European Study, Psychol. Med., 2008, vol. 38, p. 651.

    Google Scholar 

  27. Schaepler, T.E. and Kosel, M., Novel Physical Treatment for Major Depression: Vagus Nerve Stimulation, Transcranial Magnetic Stimulation and Magnetic Seizure Therapy, Current Opin. Psychiatry, 2004, vol. 17, p. 15.

    Article  Google Scholar 

  28. Bernstein, C.N., Frankenstein, U.N., Rawstorne, P., et al., Cortical Mapping of Visceral Pain in Patient with GI Disorders Using Functional Magnetic Resonance Imaging, Am. J. Gastroenterol., 2002, vol. 97, no. 2, p. 319.

    Article  PubMed  Google Scholar 

  29. Eickhoff, S.B., Lotze, M., Wietek, B., et al., Segregation of Visceral and Somatosensory Afferents: An FMRI and Cytoarchitechtonic Mapping Study, Neuroimage, 2006, vol. 31(3), p. 1004.

    Article  PubMed  Google Scholar 

  30. Durinyan, R.A., Fiziologicheskie osnovy aurikulyarnoi refleksoterapii (Physiological Basis of Auricular Reflex Therapy), Yerevan, 1983.

  31. Ladabaum, U., Minoshima, S., and Owyang, C., Pathobiology of Visceral Pain: Molecular Mechanisms and Therapeutic Implications. V. Central Nervous System Processing of Somatic and Visceral Sensory Signals, Am. J. Physiol. Gastrointest. Liver Physiol., 2000, G1–6, p. 279.

  32. Dunckley, D., Aziz, O., Wise, R.G., et al., Attentional Modulation of Visceral and Somatic Pain, Neurogastroenterol. Motil., 2007, vol. 19, p. 569.

    Article  PubMed  CAS  Google Scholar 

  33. Strelets, V.B., Disorder of the Physiological Mechanisms of Emotion and Thought Perception in Certain Forms of Mental Pathology, Fiziol. Chel., 1989, vol. 15, no. 3, p. 135.

    CAS  Google Scholar 

  34. Harmoni, T., Fernandez, T., Reyes, A., et al., Delta Activity a Sign of Internal Concentration during the Performance of Mental Tasks, 7th Int. Congr. (I.O.P.). Abstracts, Thessaloniki, 1994, p. 49.

  35. Bernson, G., Sarter, M., and Caciopp, T., Review Article. Ascending Visceral Regulation of Cortical Affective Information Processing, Eur. J. Neurosci., 2003, vol. 18, p. 2103.

    Article  Google Scholar 

  36. Bielefeldt, K., Christianson, J.A., and Davis, B.M., Basic and Clinical Aspects of Visceral Sensation: Transmission in the CNS, Neurogastroenterol. Motil., 2005, vol. 17, p. 488.

    Article  PubMed  CAS  Google Scholar 

  37. Sidhu, H., Kern, M., and Shaker, R., Absence of Increasing Cortical fMRI Activity Volume in Response to Increasing Visceral Stimulation in IBS Patients, Am. J. Physiol. Gastrointest. Liver Physiol., 2004, vol. 287, G. 425.

    Article  Google Scholar 

  38. Sarkar, S., Hobson, A.R., Furlong, P.L., et al., Central Neural Mechanisms Mediating Human Visceral Hypersensitivity, Am. J. Physiol. Gastrointest. Liver Physiol., 2001, vol. 281, G. 1196.

    Google Scholar 

  39. Westerhaus, M.J. and Loewy, A.D., Central Representation of the Sympathetic Nervous System in the Cerebral Cortex, Brain Res., 2001, vol. 903, p. 117.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Ivonin, D.O. Kutsenko, N.N. Bogdanov, V.T. Shuvaev, A.D. Nozdrachev, 2012, published in Fiziologiya Cheloveka, 2012, Vol. 38, No. 1, pp. 20–32.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivonin, A.A., Kutsenko, D.O., Bogdanov, N.N. et al. Features of the organization of the cerebral cortex bioelectric potentials and visceral state in neurotic depression. Hum Physiol 38, 14–24 (2012). https://doi.org/10.1134/S0362119712010100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119712010100

Keywords

Navigation