Skip to main content
Log in

Generalized spherically symmetric gravitational model: Hamiltonian dynamics in extended phase space and the BRST charge

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We construct the Hamiltonian dynamics of a generalized spherically symmetric gravitational model in extended phase space. We start from the Faddeev-Popov effective action with gauge-fixing and ghost terms, making use of gauge conditions in the differential form. It enables us to introduce the missing velocities into the Lagrangian and then to construct a Hamiltonian function according to the usual rule applied for systems without constraints. The main feature of Hamiltonian dynamics in extended phase space is that it can be proved to be completely equivalent to the Lagrangian dynamics derived from the effective action. We find a BRST-invariant form of the effective action by adding terms which do not affect the Lagrangian equations. After all, we construct the BRST charge according to the Noether theorem. Our algorithm differs from that by Batalin, Fradkin and Vilkovisky, but the resulting BRST charge generates correct transformations for all gravitational degrees of freedom including the gauge ones. The generalized spherically symmetric model simulates the full gravitational theory much better then models with a finite number of degrees of freedom, so that one can expect the appropriate results in the full theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Fradkin and G. A. Vilkovisky, Phys. Lett. B 55, 224 (1975).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. I. A. Batalin and G. A. Vilkovisky, Phys. Lett. B 69, 309 (1977).

    Article  ADS  Google Scholar 

  3. E. S. Fradkin and T. E. Fradkina, Phys. Lett. B 72, 343 (1978).

    Article  ADS  Google Scholar 

  4. P. A. M. Dirac, Can. J. Math. 2, 129 (1950).

    Article  MATH  MathSciNet  Google Scholar 

  5. P. A. M. Dirac, Proc. Roy. Soc. A 246, 326 (1958).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. P. A. M. Dirac, Proc. Roy. Soc. A 246, 333 (1958).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. B. S. DeWitt, in: General Relativity: an Einstein Centenary Survey, (eds. S. W. Hawking and W. Israel, Cambridge University Press, 1979), p. 680–745.

  8. M. Hennaux, Phys. Rep. 126, 1 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  9. L. Castellani, Ann. Phys. 143, 357 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  10. N. Kiriushcheva and S. V. Kuzmin, Central Eur. J. Phys. 9, 576 (2011).

    Article  ADS  Google Scholar 

  11. R. Arnowitt, S. Deser, and C. W. Misner, in: Gravitation, an Introduction to Current Research, (ed. L. Witten, John Wiley & Sons, New York, 1962), p. 227–265.

  12. J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  13. K. V. Kuchař, Phys. Rev. D 50, 3961 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  14. T. P. Shestakova, Class. Quantum Grav. 28, 055009 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  15. N. Kiriushcheva, G. Komorowski, and S. V. Kuzmin, Comment on ‘Hamiltonian formulation for the theory of gravity and canonical transformations in extended phase space’ by T. P. Shestakova, arXiv: 1107.2981.

  16. A. M. Frolov, N. Kiriushcheva, and S. V. Kuzmin, Grav. Cosmol. 17, 314 (2011).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. R. Banerjee, H. J. Rothe, and K. D. Rothe, Phys. Lett. B 463, 248 (1999).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. P. Mukherjee and A. Saha, Int. J. Mod. Phys. A 24, 4305 (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. N. Kiriushcheva, G. Komorowski, and S. V. Kuzmin, Int. J. Theor. Phys. 51, 2015 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  20. N. Kiriushcheva, G. Komorowski, and S. V. Kuzmin, Lagrangian symmetries of the ADMaction. Do we need a solution to the ‘non-canonicity puzzle’?, arXiv: 1108.6105.

  21. B. S. DeWitt, Phys. Rev. 160, 1113 (1967).

    Article  ADS  MATH  Google Scholar 

  22. T. P. Shestakova, Grav. Cosmol. 17, 67 (2011).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. V. A. Savchenko, T. P. Shestakova, and G. M. Vereshkov, Grav. Cosmol. 7, 18 (2001).

    MATH  MathSciNet  Google Scholar 

  24. V. A. Savchenko, T. P. Shestakova, and G. M. Vereshkov, Grav. Cosmol. 7, 102 (2001).

    ADS  MATH  MathSciNet  Google Scholar 

  25. L. D. Faddeev and V. N. Popov, Phys. Lett. B 25, 29 (1967).

    Article  ADS  Google Scholar 

  26. F. Cianfrani and G. Montani, Phys. Rev. D 87, 084025 (2013).

    Article  ADS  Google Scholar 

  27. S. Weinberg, Quantum Theory of Fields (Cambridge University Press, Cambridge, UK, 1996).

    Book  Google Scholar 

  28. J. J. Halliwell, Phys. Rev. D 38, 2468 (1988).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Shestakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestakova, T.P. Generalized spherically symmetric gravitational model: Hamiltonian dynamics in extended phase space and the BRST charge. Gravit. Cosmol. 20, 67–79 (2014). https://doi.org/10.1134/S020228931402011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S020228931402011X

Keywords

Navigation