Skip to main content
Log in

On elimination of state constraints in the construction of reachable sets

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

The paper is devoted to the problem of approximating reachable sets of a nonlinear control system with state constraints given as a solution set of a nonlinear inequality. A state constraint elimination procedure based on the introduction of an auxiliary constraintfree control system is proposed. The equations of the auxiliary system depend on a small parameter. It is shown that the reachable set of the original system can be approximated in the Hausdorff metric by reachable sets of the auxiliary control system as the small parameter tends to zero. Estimates of the convergence rate are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Krasovskii, Game Problems on the Encounter of Motions (Nauka, Moscow, 1970) [in Russian].

    MATH  Google Scholar 

  2. A. B. Kurzhanskii, Control and Observation under Uncertainty (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  3. F. L. Chernous’ko, Estimation of the Phase State of Dynamic Systems (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  4. N. N. Krasovski and A. I. Subbotin, Game-Theoretical Control Problems (Springer, New York, 1988).

    Book  Google Scholar 

  5. A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control (Birkhäuser, Boston, 1997).

    Book  MATH  Google Scholar 

  6. A. V. Lotov, “A numerical method for constructing sets of attainability for linear controlled systems with phase constraints,” USSR Comp. Math. Math. Phys. 15 1, 63–74 (1975).

    Article  MATH  Google Scholar 

  7. A. R. Matviichuk and V. N. Ushakov, “On the construction of resolving controls in control problems with phase constraints,” J. Comput. Syst. Sci. Int. 45 1, 1–16 (2006).

    Article  MathSciNet  Google Scholar 

  8. A. B. Kurzhanski, I. M. Mitchell, and P. Varaiya, “Optimization techniques for state-constrained control and obstacle problems,” J. Optim. Theory Appl. 128 3, 499–521 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Baier, I. A. Chahma, and F. Lempio, “Stability and convergence of Euler’s method for state-constrained differential inclusions,” SIAM J. Optim. 18 3, 1004–1026 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Bonneuil, “Computing reachable sets as capture-viability kernels in reverse time,” Appl. Math. 3, 1593–1597 (2012).

    Article  Google Scholar 

  11. E. K. Kostousova, “External and internal estimation of attainability domains by means of parallelotopes,” Vychisl. Tekhnologii 3 2, 11–20 (1998).

    MathSciNet  MATH  Google Scholar 

  12. M. I. Gusev, “External estimates of the reachability sets of nonlinear controlled systems,” Autom. Remote Control 73 3, 450–461 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. B. Kurzhanskii and T. F. Filippova, “Description of a set of viable trajectories of a differential inclusion,” Dokl. Akad. Nauk SSSR 289 1, 38–41 (1986).

    MathSciNet  Google Scholar 

  14. A. B. Kurzhanskii and T. F. Filippova, “Description of the bundle of viable trajectories of a control system,” Differents. Uravneniya 23 8, 1303–1315 (1987).

    MathSciNet  MATH  Google Scholar 

  15. M. I. Gusev, “On the penalty function method in the problem of constructing reachable sets for control systems with state constraints,” Trudy Inst. Mat. Mekh. UrO RAN 19 (1), 8186 (2013).

    MathSciNet  Google Scholar 

  16. M. I. Gusev, “Internal approximations of reachable sets of control systems with state constraints,” Proc. Steklov Inst. Math. 287 (Suppl. 1), S77–S92 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Forcellini and F. Rampazzo, “On nonconvex differential inclusions whose state is constrained in the closure of an open set,” Differential Integral Equations 12 4, 471–497 (1999).

    MathSciNet  MATH  Google Scholar 

  18. H. Frankowska and R. B. Vinter, “Existence of neighboring feasible trajectories: Applications to dynamic programming for state-constrained optimal control problems,” J. Optim. Theory Appl. 104 1, 21–40 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Bettiol, A. Bressan, and R. Vinter, “Trajectories satisfying a state constraint: W(1,1) estimates and counterexamples,” SIAM J. Control Optim. 48 7, 4664–4679 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  20. R. J. Stern, “Characterization of the state constrained minimal time function,” SIAM J. Control Optim. 43 2, 697–707 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  22. E. D. Sontag, “A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization,” System and Control Letters 13 2, 117–123 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  23. E. B. Lee and L. Markus, Foundations of Optimal Control Theory (Wiley, New York, 1967; Nauka, Moscow, 1972).

    MATH  Google Scholar 

  24. M. I. Gusev, “On the reachibility problem under phase constraints,” in Proceedings of the 12th All-Russia Meeting on Control Problems, Moscow, Russia, 2014 (Inst. Probl. Upravl., Moscow, 2014), pp. 610–621.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Gusev.

Additional information

Original Russian Text © M.I.Gusev, 2014, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Vol. 20, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, M.I. On elimination of state constraints in the construction of reachable sets. Proc. Steklov Inst. Math. 292 (Suppl 1), 115–124 (2016). https://doi.org/10.1134/S0081543816020103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543816020103

Keywords

Navigation