Skip to main content
Log in

On elliptic equations and systems with critical growth in dimension two

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider nonlinear elliptic equations of the form −Δu = g(u) in Ω, u = 0 on ∂Ω, and Hamiltonian-type systems of the form −Δu = g(v) in Ω, −Δv = f(u) in Ω, u = 0 and v = 0 on ∂Ω, where Ω is a bounded domain in ℝ2 and f, gC(ℝ) are superlinear nonlinearities. In two dimensions the maximal growth (= critical growth) of f and g (such that the problem can be treated variationally) is of exponential type, given by Pohozaev-Trudinger-type inequalities. We discuss existence and nonexistence results related to the critical growth for the equation and the system. A natural framework for such equations and systems is given by Sobolev spaces, which provide in most cases an adequate answer concerning the maximal growth involved. However, we will see that for the system in dimension 2, the Sobolev embeddings are not sufficiently fine to capture the true maximal growths. We will show that working in Lorentz spaces gives better results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed. (Academic, New York, 2003).

    MATH  Google Scholar 

  2. Adimurthi, “Existence of Positive Solutions of the Semilinear Dirichlet Problem with Critical Growth for the n-Laplacian,” Ann. Scuola Norm. Super. Pisa 17, 393–413 (1990).

    MathSciNet  MATH  Google Scholar 

  3. A. Ambrosetti and P. H. Rabinowitz, “Dual Variational Methods in Critical Point Theory and Applications,” J. Funct. Anal. 14, 349–381 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  4. Adimurthi and S. L. Yadava, “Multiplicity Results for Semilinear Elliptic Equations in a Bounded Domain of ℝ2 Involving Critical Exponent,” Ann. Scuola Norm. Super. Pisa 17, 481–504 (1990).

    MathSciNet  MATH  Google Scholar 

  5. H. Brezis, “Laser Beams and Limiting Cases of Sobolev Inequalities,” in Nonlinear Partial Differential Equations and Their Applications: Collège de France Seminar, Ed. by H. Brezis and J. L. Lions (Pitman, Boston, 1982), Vol. 2, Pitman Res. Notes Math. 60, pp. 86–97.

    Google Scholar 

  6. H. Brezis and L. Nirenberg, “Positive Solutions of Nonlinear Elliptic Problems Involving Critical Sobolev Exponents,” Commun. Pure Appl. Math. 36, 437–477 (1983).

    MathSciNet  MATH  Google Scholar 

  7. H. Brezis and S. Wainger, “A Note on Limiting Cases of Sobolev Embeddings and Convolution Inequalities,” Commun. Partial Diff. Eqns. 5, 773–789 (1980).

    MathSciNet  MATH  Google Scholar 

  8. L. Carleson and S.-Y. A. Chang, “On the Existence of an Extremal Function for an Inequality of J. Moser,” Bull. Sci. Math., Sér. 2, 110, 113–127 (1986).

    MathSciNet  MATH  Google Scholar 

  9. D. G. de Figueiredo and P. L. Felmer, “On Superquadratic Elliptic Systems,” Trans. Am. Math. Soc. 343, 99–116 (1994).

    Article  MATH  Google Scholar 

  10. D. G. de Figueiredo, J. M. do Ó, and B. Ruf, “On an Inequality by N. Trudinger and J. Moser and Related Elliptic Equations,” Commun. Pure Appl. Math. 55, 135–152 (2002).

    Article  MATH  Google Scholar 

  11. D. G. de Figueiredo, J. M. do Ó, and B. Ruf, “Critical and Subcritical Elliptic Systems in Dimension Two,” Indiana Univ. Math. J. 53, 1037–1054 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  12. D. G. de Figueiredo, J. M. do Ó, and B. Ruf, “An Orlicz-Space Approach to Superlinear Elliptic Systems,” J. Funct. Anal. 224, 471–496 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. G. de Figueiredo and B. Ruf, “Existence and Nonexistence of Solutions for Elliptic Equations with Critical Growth in ℝ2,” Commun. Pure Appl. Math. 48, 639–655 (1995).

    MATH  Google Scholar 

  14. D. G. de Figueiredo, O. H. Miyagaki, and B. Ruf, “Elliptic Equations in ℝ2 with Nonlinearities in the Critical Growth Range,” Calc. Var. Partial Diff. Eqns. 3, 139–153 (1995).

    Article  MATH  Google Scholar 

  15. M. Flucher, “Extremal Functions for the Trudinger-Moser Inequality in 2 Dimensions,” Comment. Math. Helv. 67, 471–497 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Gidas, W. N. Ni, and L. Nirenberg, “Symmetry and Related Properties via the Maximum Principle,” Commun. Math. Phys. 68, 209–243 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Hulshof and R. van der Vorst, “Differential Systems with Strongly Indefinite Variational Structure,” J. Funct. Anal. 114, 32–58 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  18. P.-L. Lions, “The Concentration-Compactness Principle in the Calculus of Variations. The Limit Case. I,” Rev. Mat. Iberoam. 1, 145–201 (1985).

    MATH  Google Scholar 

  19. J. Moser, “A Sharp Form of an Inequality by Trudinger,” Indiana Univ. Math. J. 20, 1077–1092 (1971).

    Article  Google Scholar 

  20. S. I. Pokhozhaev, “The Sobolev Embedding Theorem in the Case pl = n,” in Proc. Tech. Sci. Conf., Sect. Math. (Moscow Power Inst., Moscow, 1965), pp. 158–170.

    Google Scholar 

  21. S. I. Pokhozhaev, “Eigenfunctions of the Equation Δu + λf(u) = 0,” Dokl. Adad. Nauk SSSR 165(1), 36–39 (1965) [Sov. Math., Dokl. 6, 1408–1411 (1965)].

    Google Scholar 

  22. P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations (Am. Math. Soc., Providence, RI, 1986), CBMS Reg. Conf. Ser. Math. 65.

    Google Scholar 

  23. R. S. Strichartz, “A Note on Trudinger’s Extension of Sobolev’s Inequalities,” Indiana Univ. Math. J. 21, 841–842 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Talenti, “Best Constants in Sobolev Inequality,” Ann. Mat. Pura Appl. 110, 353–372 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  25. N. S. Trudinger, “On Imbeddings into Orlicz Spaces and Some Applications,” J. Math. Mech. 17, 473–483 (1967).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor S. Nikol’skii on the occasion of his 100th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruf, B. On elliptic equations and systems with critical growth in dimension two. Proc. Steklov Inst. Math. 255, 234–243 (2006). https://doi.org/10.1134/S0081543806040195

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543806040195

Keywords

Navigation