Skip to main content
Log in

Model of quark–antiquark interaction in quantum chromodynamics on the light front

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We formulate a model of quark–antiquark interaction related to the limit transition to the light-front Hamiltonian in quantum chromodynamics. As ultraviolet regularization, we use a lattice in the space of transverse coordinates, and we additionally introduce a longitudinal light-front coordinate cutoff and also corresponding periodic boundary conditions. We regard the zero mode with respect to this coordinate as an independent dynamical variable. The state space of the model is limited to a quark and an antiquark that interact only via the zero mode of the gluon field on the light front. In this framework, we obtain a discrete mass spectrum of bound states. This spectrum is determined by an equation that with respect to the longitudinal coordinate turns out to be analogous to the’ t Hooft equation in two-dimensional quantum chromodynamics. The equation also contains a quark–antiquark potential that ensures confinement in the transverse space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Zubov, E. V. Prokhvatilov, and M. Yu. Malyshev, “Limit transition to the light-front QCD and a quark–antiquark approximation,” Theor. Math. Phys., 184, 1287–1294 (2015).

    Article  MATH  Google Scholar 

  2. P. A. M. Dirac, “Forms of relativistic dynamics,” Rev. Modern Phys., 21, 392–398 (1949).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. M. Burkardt and A. Langnau, “Hamiltonian formulation of (2+1)-dimensional QED on the light cone,” Phys. Rev. D, 44, 1187–1197 (1991).

    Article  ADS  Google Scholar 

  4. M. Burkardt and A. Langnau, “Rotational invariance in light-cone quantization,” Phys. Rev. D, 44, 3857–3867 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. A. Paston and V. A. Franke, “Comparison of quantum field perturbation theory for the light front with the theory in Lorentz coordinates,” Theor. Math. Phys., 112, 1117–1130 (1997); arXiv:hep-th/9901110v1 (1999).

    Article  Google Scholar 

  6. V. A. Franke, Yu. V. Novozhilov, S. A. Paston, and E. V. Prokhvatilov, “Quantization of field theory on the light front,” in: Focus on Quantum Field Theory (O. Kovras, ed.), Nova Science, New York (2005), pp. 23–81; arXiv:hep-th/0404031v2 (2004).

    Google Scholar 

  7. S. A. Paston, E. V. Prokhvatilov, and V. A. Franke, Theor. Math. Phys., 120, 1164–1181 (1999); arXiv:hep-th/ 0002062v3 (2000).

    Article  Google Scholar 

  8. E. V. Prokhvatilov and V. A. Franke, “Limiting transition of light-front coordinates in field theory and the QCD Hamiltonian,” Sov. J. Nucl. Phys., 49, 688–692 (1989).

    Google Scholar 

  9. V. A. Franke, Yu. V. Novozhilov, and E. V. Prokhvatilov, “On the light-cone formulation of classical non-abelian gauge theory,” Lett. Math. Phys., 5, 239–245 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  10. V. A. Franke, Yu. V. Novozhilov, and E. V. Prokhvatilov, “On the light-cone quantization of non-abelian gauge theory,” Lett. Math. Phys., 5, 437–444 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  11. E. V. Prokhvatilov, H. W. L. Naus, and H.-J. Pirner, “Effective light-front quantization of scalar field theories and two-dimensional electrodynamics,” Phys. Rev. D, 51, 2933–2942 (1995).

    Article  ADS  Google Scholar 

  12. E. M. Ilgenfriz, S. A. Paston, H. J. Pirner, E. V. Prokhvatilov, and V. A. Franke, “Quantum fields on the light front, formulation in coordinates close to the light front, lattice approximation,” Theor. Math. Phys., 148, 948–959 (2006); arXiv:hep-th/0610020v1 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  13. E. V. Prokhvatilov and V. A. Franke, “Approximate description of QCD condensates in light cone coordinates,” Sov. J. Nucl. Phys., 47, 559 (1988).

    Google Scholar 

  14. M. Yu. Malyshev and E. V. Prokhvatilov, “Construction of the light-front QCD Hamiltonian with zero modes modeling the vacuum,” Theor. Math. Phys., 169, 1600–1610 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  15. G. ’t Hooft, “A two-dimensional model for mesons,” Nucl. Phys. B, 75, 461–470 (1974).

    Article  ADS  Google Scholar 

  16. D. V. Bugg, “Four sorts of meson,” Phys. Rep., 397, 257–358 (2004).

    Article  ADS  Google Scholar 

  17. S. S. Afonin, “Experimental indication on chiral symmetry restoration in meson spectrum,” Phys. Lett. B, 639, 258–262 (2006); arXiv:hep-ph/0603166v2 (2006).

    Article  ADS  Google Scholar 

  18. S. S. Afonin, “Light meson spectrum and classical symmetries of QCD,” Eur. Phys. J. A, 29, 327–335 (2006); arXiv:hep-ph/0606310v2 (2006).

    Article  ADS  Google Scholar 

  19. M. Shifman and A. Vainshtein, “Highly excited mesons, linear Regge trajectories, and the pattern of the chiral symmetry realization,” Phys. Rev. D, 77, 034002 (2008);arXiv:0710.0863v3 [hep-ph] (2007).

    Article  ADS  Google Scholar 

  20. S. J. Brodsky, T. Huang, and G. P. Lepage, “Hadronic wave functions and high momentum transfer interactions in quantum chromodynamics,” in: Particles and Fields 2 (Summer institute, Banff, Canada, 16–27 August 1981, A. Z. Capri and A. N. Kamal, eds), Plenum, New York (1983), pp. 143–199.

    Google Scholar 

  21. A. Vega, I. Schmidt, T. Branz, T. Gutsche, and V. E. Lyubovitskij, “Meson wave function from holographic models,” Phys. Rev. D, 80, 055014 (2009);arXiv:0906.1220v1 [hep-ph] (2009).

    Article  ADS  Google Scholar 

  22. A. V. Radyushkin, “Nonforward parton densities and soft mechanism for form factors and wide-angle Compton scattering in QCD,” Phys. Rev. D, 58, 114008 (1998);arXiv:hep-ph/9803316v2 (1998).

    Article  ADS  Google Scholar 

  23. S. S. Afonin, “Towards understanding broad degeneracy in non-strange mesons,” Modern Phys. Lett. A, 22, 1359–1371 (2007); arXiv:hep-ph/0701089v2 (2007).

    Article  ADS  Google Scholar 

  24. S. S. Afonin, “Properties of possible new unflavored mesons below 2.4 GeV,” Phys. Rev. C, 76, 015202 (2007);arXiv:0707.0824v1 [hep-ph] (2007).

    Article  ADS  Google Scholar 

  25. S. S. Afonin, “Hydrogen like classification for light nonstrange mesons,” Internat. J. Modern Phys. A, 23, 4205–4217 (2008); arXiv:0709.4444v2 [hep-ph] (2007).

    Article  ADS  Google Scholar 

  26. P. Bicudo, “Large degeneracy of excited hadrons and quark models,” Phys. Rev. D, 76, 094005 (2007);arXiv:hep-ph/0703114v2 (2007).

    Article  ADS  Google Scholar 

  27. J. Alfaro, P. Labrana, and A. A. Andrianov, “Extended QCD2 from dimensional projection of QCD4,” JHEP, 0407, 067 (2004);arXiv:hep-th/0309110v3 (2003).

    Article  ADS  Google Scholar 

  28. S. J. Brodsky and G. F. de Téramond, “Hadronic spectra and light-front wave functions in holographic QCD,” Phys. Rev. Lett., 96, 201601 (2006);arXiv:hep-ph/0602252v2 (2006).

    Article  ADS  Google Scholar 

  29. S. S. Chabysheva and J. R. Hiller, “Dynamical model for longitudinal wave functions in light-front holographic QCD,” Ann. Phys., 337, 143–152 (2013); arXiv:1207.7128v2 [hep-ph] (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Zubov.

Additional information

This research was supported by St. Petersburg State University (Research Grant No. 11.38.189.2014).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 190, No. 3, pp. 440–454, March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubov, R.A., Prokhvatilov, E.V. & Malyshev, M.Y. Model of quark–antiquark interaction in quantum chromodynamics on the light front. Theor Math Phys 190, 378–390 (2017). https://doi.org/10.1134/S0040577917030072

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917030072

Keywords

Navigation