Skip to main content
Log in

The potential energy surfaces of the ground and excited states of carbon dioxide molecule

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Potential energy surfaces (PESs) of the 1Al(1Σ + g ), 1B2 and 3B2 electronic states of CO2 have been computed as a function of the two bond distances and the bond angle. The calculations were based on the complete active space self consistent field (CASSCF) and multiconfigurational second-order perturbation theory (CASPT2) electronic structure models. From our calculations no crossing point between 1B2 and 3B2 states was found, but there is a crossing point located between 1B2 and 3A2 state on the PESs. The energy of the crossing point is lie 0.23 eV above the CO + O (3P), which is in agreement with the value of 0.27 eV on the experiment. This implies that the mechanism of the recombination of an oxygen atom with a carbon monoxide molecule: CO(X 1Σ+, ν) + O(3P)→3CO2*→1CO2*→CO(X 1Σ+, ν = 0) + O(1 D) may occur through the 3A2 state crossing the 1B2 state. The equilibrium geometries and adiabatic excitation energies of 1,3B2, 1,3A2 states of CO2 were reported and discussed in this paper, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Chen, F. Liu, B. Jiang, et al., J. Phys. Chem. Lett. 1, 1861 (2010).

    Article  CAS  Google Scholar 

  2. I.-C. Lu, J. J. Lin, S.-H. Lee, et al., Chem. Phys. Lett. 382, 665 (2003).

    Article  CAS  Google Scholar 

  3. A. Stolow and Y. T. Lee, J. Chem. Phys. 98, 2066 (1993).

    Article  CAS  Google Scholar 

  4. R. L. Miller, S. H. Kable, P. L. Houston, et al., J. Chem. Phys. 96, 332 (1992).

    Article  CAS  Google Scholar 

  5. Y. Matsumi, N. Shafer, K. Tonokura, et al., J. Chem. Phys. 95, 7311 (1991).

    Article  CAS  Google Scholar 

  6. S. Y. Grebenshchikov, J. Chem. Phys. 137, 021101 (2012).

    Article  Google Scholar 

  7. M. Braunstein and J. W. Duff, J. Phys. Chem. A 113, 10795 (2009).

    Article  CAS  Google Scholar 

  8. A. L. Brunsvold, H. P. Upadhyaya, J. Zhang, et al., J. Phys. Chem. A 112, 2192 (2008).

    Article  CAS  Google Scholar 

  9. H.-F. Chen and Y.-P. Lee, J. Phys. Chem. A 110, 12096 (2006).

    Article  CAS  Google Scholar 

  10. Y. Matsumi, Y. Inagaki, G. P. Morley, et al., J. Phys. Chem. 100, 315 (1994).

    Article  CAS  Google Scholar 

  11. M. Abe, Y. Inagaki, L. L. Springsteen, et al., J. Phys. Chem. 98, 12641 (1994).

    Article  CAS  Google Scholar 

  12. D. R. Harding, J. R. E. Weston, and G. W. Flynn, J. Chem. Phys. 88, 3590 (1988).

    Article  CAS  Google Scholar 

  13. R. G. Shortridge and M. C. Lin, J. Chem. Phys. 64, 4076 (1976).

    Article  CAS  Google Scholar 

  14. O. F. Raper and W. B. DeMore, J. Chem. Phys. 40, 1053 (1964).

    Article  CAS  Google Scholar 

  15. S. R. Kinnersly, Mol. Phys. 38, 1067 (1979).

    Article  CAS  Google Scholar 

  16. V. Y. Simkin, A. I. Dement’ev, and V. I. Pupyshev, Russ. J. Phys. Chem. A 56, 1739 (1982).

    Google Scholar 

  17. M. C. Lin and S. H. Bauer, J. Chem. Phys. 50, 3377 (1969).

    Article  CAS  Google Scholar 

  18. A. Spielfiedel, N. Feautrier, C. Cossart-Magos, et al., J. Chem. Phys. 97, 8382 (1992).

    Article  CAS  Google Scholar 

  19. G. Karlström, L. Lingh, P.-Å. Malmqvist, et al., Comput. Mater. Sci. 28, 222 (2003).

    Article  Google Scholar 

  20. R. B. Wattson and L. S. Rothman, J. Mol. Spectrosc. 119, 83 (1986).

    Article  CAS  Google Scholar 

  21. C. Cossart-Magos, F. Launay, and J. E. Parkin, Mol. Phys. 75, 835 (1992).

    Article  CAS  Google Scholar 

  22. R. N. Dixon, Proc. R. Soc. London A 275, 431 (1963).

    Article  CAS  Google Scholar 

  23. N. W. Winter, C. F. Bender, and W. A. Goddard III, Chem. Phys. Lett. 20, 489 (1973).

    Article  CAS  Google Scholar 

  24. M. Braunstein and J. W. Duff, J. Chem. Phys. 112, 2736 (2000).

    Article  CAS  Google Scholar 

  25. M. A. A. Clyne and B. A. Thrush, Proc. R. Soc. London A 269, 404 (1962).

    Article  CAS  Google Scholar 

  26. S. S. Xantheas and R. Klaus, Int. J. Quantum. Chem. 49, 409 (1994).

    Article  CAS  Google Scholar 

  27. D.-Y. Hwang and A. M. Mebel, Chem. Phys. 256, 169 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Ma.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Peng, L., Zhang, H. et al. The potential energy surfaces of the ground and excited states of carbon dioxide molecule. Russ. J. Phys. Chem. 88, 2339–2347 (2014). https://doi.org/10.1134/S0036024414130287

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414130287

Keywords

Navigation