Skip to main content
Log in

Nuclear-chemical processes under the conditions of laser ablation of metals in aqueous media (problems of “cold fusion”)

  • Theory of Atomic Molecular Processes
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A brief review of results on initiation of nuclear transformations under conditions of the laser ablation of metals in aqueous media upon exposure to picosecond laser impulses with peak intensity J E ∼ 1010–1013 W/cm2, which is orders of magnitude less than required for the direct initiation of nuclear processes, J E ∼ 1018–1019 W/cm2, is presented. It is shown that the decay rate of radioactive nuclei (using the example of uranium 238) increases significantly (by orders of magnitude), nucleus transmutation processes are initiated (using the example of the transmutation of mercury 196 nuclei into gold 197), and the nuclear fusion of light elements occurs (using the example of tritium nuclei) under such conditions. Concepts regarding the processes of inelastic (with the generation of neutrino-antineutrino pair) interactions between electrons of high (on the chemical scale) energies (∼5–10 eV) and nuclei are developed in order to understand the totality of the current experimental data on the initiation of such processes under conditions of the laser ablation of metals in solutions of ordinary and heavy water. This is reflected in the definition of such processes as nuclear-chemical. It is suggested that the state of nuclear matter in nuclei formed during such interactions is in an unbalanced in-shake-up state, and cannot be pictured in the standard manner, as an ensemble of a certain number of nucleons. Such states are reactive for a wide class of nuclear transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Takahashi, in Condensed Matter Nuclear Science, Proceedings of the 12th International Conference on Cold Fusion, Yokohamacity, Japan, 27 Nov.–2 Dec. 2005 (World Scientific, Singapore, 2005), p. 1.

    Google Scholar 

  2. I. B. Savvatimova and A. B. Karabut, Poverkhnost 1, 63 (1996).

    Google Scholar 

  3. I. B. Savvatimova and D. V. Gavritenkov, in Condensed Matter Nuclear Science, Proceedings of the 12th International Conference on Cold Fusion, Yokohamacity, Japan, 27 Nov.–2 Dec. 2005 (World Scientific, Singapore, 2005), pp. 231–252.

    Google Scholar 

  4. A. B. Karabut, in Condensed Matter Nuclear Science, Proceedings of the 12th International Conference on Cold Fusion, Yokohamacity, Japan, 27 Nov.–2 Dec. 2005 (World Scientific, Singapore, 2005), pp. 214–230.

    Google Scholar 

  5. A. V. Arzhannikov, G. Ya. Kezerashvili, and E. P. Kruglyakov, Phys. Usp. 42, 625 (1999).

    Article  Google Scholar 

  6. M. Fleishmann, S. Pons, and M. Hawkins, J. Electroanal. Chem. 261, 301 (1989).

    Article  Google Scholar 

  7. G. A. Shafeev, F. Bozon-Verduraz, and M. Robert, Phys. Wave Phenom. 15, 131 (2007).

    Article  Google Scholar 

  8. A. V. Simakin and G. A. Shafeev, Appl. Phys. A 101, 199 (2009).

    Article  Google Scholar 

  9. A. V. Simakin and G. A. Shafeev. http://arxiv.org/ftp/arxiv/papers/1001/1001.3574

  10. G. A. Shafeev, in Uranium: Characteristics, Occurrence and Human Exposure, Ed. by A. Ya. Vasiliev and M. Sidorov (Nova Science, 2012), pp. 117–153.

  11. E. V. Barmina, I. A. Sukhov, N. M. Lepekhin, et al., Quantum Electron. 43, 591 (2013).

    Article  CAS  Google Scholar 

  12. A. V. Simakin and G. A. Shafeev, Phys. Wave Phenom. 16, 268 (2008).

    Article  Google Scholar 

  13. G. A. Shafeev, A. V. Simakin, F. Bozon-Verduraz, and M. Robert, Appl. Surf. Sci. 254, 1022 (2007).

    Article  CAS  Google Scholar 

  14. E. V. Barmina, P. G. Kuzmin, S. F. Timashev, and G. A. Shafeev. http://arxiv.org/abs/1306.0830

  15. N. A. Kirichenko, A. V. Simakin, and G. A. Shafeev, Phys. Wave Phenom. 22 (2014, in press).

  16. L. A. Artsimovich, M. A. Andrianov, E. I. Dobrokhotov, et al., At. Energy 3, 375 (1956).

    Article  Google Scholar 

  17. I. V. Kurchatov, Usp. Fiz. Nauk 59, 603 (1956).

    Article  Google Scholar 

  18. B. A. Trubnikov, Plasma Theory (Energoatomizdat, Moscow, 1996) [in Russian].

    Google Scholar 

  19. V. V. Vikhrev and V. D. Korolev, Plasma Phys. Rep. 33, 356 (2007).

    Article  CAS  Google Scholar 

  20. Yu. V. Matveev, Plasma Phys. Rep. 36, 200 (2010).

    Article  CAS  Google Scholar 

  21. S. F. Timashev. http://arxiv.org/abs/1107.1799v7

  22. S. Fritzler, Z. Najmudin, V. Malka, et al., Phys. Rev. Lett. 89, 165004 (2002).

    Article  CAS  Google Scholar 

  23. C. Labaune, C. Baccou, S. Depierreux, et al., Nature Commun. 4, 2506 (2013), doi:10.1038/ncomms3506, arXiv:1310/2002v1.

    Article  CAS  Google Scholar 

  24. K. Hatanaka, T. Miura, and H. Fukumura, Appl. Phys. Lett. 80, 3925 (2002).

    Article  CAS  Google Scholar 

  25. M. Stafe, A. Marcu, and N. Puscas, Pulsed Laser Ablation of Solids. Basics, Theory, and Applications (Springer, Berlin, Heidelberg, 2014).

    Book  Google Scholar 

  26. A. A. Serkov, A. A. Akovantseva, E. V. Barmina, et al., Russ. J. Phys. Chem. A 88, 1017 (2014).

    Article  Google Scholar 

  27. A. I. Baz’, V. I. Gol’danskii, and Ya. B. Zel’dovich, Sov. Phys. Usp. 8, 177 (1965).

    Article  Google Scholar 

  28. S. F. Timashev, V. I. Muromtsev, and A. A. Akovantseva, Russ. J. Phys. Chem. A 87, 1063 (2013).

    Article  CAS  Google Scholar 

  29. S. B. Borzakov, Ts. Panteleev, A. V. Strelkov, and T. Soldner, The Search for the Dineutron at the High Flux Reactor ILL (Grenoble, France), ISINN-10 (Ob”ed. Inst. Yad. Issled., Dubna, 2003) [in Russian].

    Google Scholar 

  30. K. Seth and B. Parker, Phys. Rev. Lett. 66, 2448 (1991).

    Article  CAS  Google Scholar 

  31. B. Pritychenko, arXiv:1004.3280v1.

  32. H.-V. Klapdor-Kleingrothaus and K. Zuber, Particle Astrophysics (Inst. of Physics, Bristol, Philadelphia, 2000).

    Book  Google Scholar 

  33. V. A. Bednyakov, Phys. Part. Nucl. 33, 583 (2002).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Timashev.

Additional information

Original Russian Text © S.F. Timashev, A.V. Simakin, G.A. Shafeev, 2014, published in Zhurnal Fizicheskoi Khimii, 2014, Vol. 88, No. 11, pp. 1805–1815.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timashev, S.F., Simakin, A.V. & Shafeev, G.A. Nuclear-chemical processes under the conditions of laser ablation of metals in aqueous media (problems of “cold fusion”). Russ. J. Phys. Chem. 88, 1980–1988 (2014). https://doi.org/10.1134/S0036024414110168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414110168

Keywords

Navigation