Skip to main content
Log in

A dielectric study of the structure of propylene glycol

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The dielectric spectra of propylene glycol over the frequency and temperature ranges 10 mHz–75 GHz and 175–423 K, respectively, were analyzed using the Dissado-Hill cluster model. A correlation between relaxation processes of breaking and formation of intermolecular H-bonds in clusters was obtained. A correlation of fluctuation processes of synchronous exchange of molecules between neighboring clusters corresponded to the redistribution of H-bonds between them. The Dissado-Hill theory was used to determine the integral relaxation times, n DH and m DH parameters and calculate the mean dipole moments of propylene glycol clusters and the energy characteristics of processes of their rearrangement. The mean dipole moments of clusters (23617–18.65 D) were compared with those of molecules in the liquid phase (3.67–3.03 D). The apparent activation enthalpy of processes of cluster rearrangements decreased from 141.8 to 25.2 kJ/mol, the activation energy decreased from 46.03 to 18.47 kJ/mol, and the energy of orientation dipole-dipole interactions, from 3.78 to 3.45 kJ/mol as the temperature increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fröhlich, Theory of Dielectrics: Dielectric Constant and Dielectric Loss (Clarendon, Oxford, 1949, 1958; Inostr. Liter., Moscow, 1960) [in Russian].

    Google Scholar 

  2. M. I. Shakhparonov, Introduction to Modern Theory of Solution (Vyssh. Shkola, Moscow, 1976) [in Russian].

    Google Scholar 

  3. L. A. Dissado and R. M. Hill, Nature 279, 685 (1979).

    Article  CAS  Google Scholar 

  4. L. A. Dissado and R. M. Hill, Philos. Mag. B 41, 625 (1980).

    Article  CAS  Google Scholar 

  5. L. A. Dissado and R. M. Hill, Proc. R. Soc. London A 390, 131 (1983).

    Article  CAS  Google Scholar 

  6. L. A. Dissado and R. M. Hill, J. Chem. Soc., Faraday Trans. II 78, 81 (1982).

    Article  CAS  Google Scholar 

  7. L. A. Dissado, Chem. Phys. 91, 183 (1984).

    Article  CAS  Google Scholar 

  8. R. M. Hill, Phys. Stat. Solidi B 103, 319 (1981).

    Article  CAS  Google Scholar 

  9. R. M. Hill and L. A. Dissado, J. Phys. C: Solid State Phys. 15, 5171 (1982).

    Article  CAS  Google Scholar 

  10. J. L. Tamarit, M. A. Perez-Jubindo, and M. R. Fuente, J. Phys.: Condens. Matter 9, 5469 (1997).

    Article  CAS  Google Scholar 

  11. D. V. Davidson and R. H. Cole, J. Chem. Phys. 19, 1484 (1951).

    Article  CAS  Google Scholar 

  12. C. A. Angell and D. L. Smith, J. Phys. Chem. 86, 3845 (1982).

    Article  CAS  Google Scholar 

  13. V. I. Zhuravlev, Candidate’s Dissertation in Mathematical Physics (Mosc. Gos. Univ., Moscow, 1988).

    Google Scholar 

  14. V. I. Zhuravlev, Zh. Fiz. Khim. 66, 225 (1992).

    CAS  Google Scholar 

  15. I. S. Park, K. Saruta, and S. Kojima, J. Phys. Soc. Jpn. 67, 4131 (1998).

    Article  CAS  Google Scholar 

  16. C. Leon, K. L. Ngai, and C. M. Roland, J. Chem. Phys. 110, 11585 (1999).

    Article  CAS  Google Scholar 

  17. C. Leon and K. L. Ngai, J. Phys. Chem. B 103, 4045 (1999).

    Article  CAS  Google Scholar 

  18. K. L. Ngai, P. Lunkenheimer, C. Leon, U. Schhneider, et al., J. Chem. Phys. 115, 1405 (2001).

    Article  CAS  Google Scholar 

  19. D. B. Kayumova, Yu. P. Syrnikov, N. V. Penkina, and M. N. Rodnikova, Zh. Fiz. Khim. 80, 1839 (2006) [Russ. J. Phys. Chem. A 80, 1634 (2006)].

    Google Scholar 

  20. H. Forsman, P. Anderson, and G. Bäckstrom, J. Chem. Soc., Faraday Trans. 82, 857 (1986).

    Article  CAS  Google Scholar 

  21. H. Forsman, J. Phys. D: Appl. Phys. 22, 1528 (1989).

    Article  CAS  Google Scholar 

  22. T. M. Usacheva, N. V. Lifanova, V. I. Zhuravlev, et al., Zh. Fiz. Khim. 75, 1138 (2001) [Russ. J. Phys. Chem. A 75, 1138 (2001)].

    Google Scholar 

  23. N. V. Lifanova, T. M. Usacheva, V. I. Zhuravlev, et al., Zh. Fiz. Khim. 75, 1263 (2001) [Russ. J. Phys. Chem. A 75, 1143 (2001)].

    CAS  Google Scholar 

  24. N. V. Lifanova, T. M. Usacheva, V. I. Zhuravlev, and V. K. Matveev, Zh. Fiz. Khim. 77, 542 (2003) [Russ. J. Phys. Chem. A 77, 477 (2003)].

    CAS  Google Scholar 

  25. V. I. Zhuravlev, N. V. Lifanova, and T. M. Usacheva, J. Mol. Liquids 120, 107 (2005).

    Article  CAS  Google Scholar 

  26. N. V. Lifanova, T. M. Usacheva, V. I. Zhuravlev, and V. K. Matveev, Zh. Fiz. Khim. 82, 1973 (2008) [Russ. J. Phys. Chem. A 82, 1769 (2008)].

    Google Scholar 

  27. S. H. Chung, K. Pathmanathan, and G. P. Johari, J. Polym. Sci. B: Polym. Phys. 24, 2655 (1986).

    Article  CAS  Google Scholar 

  28. G. P. Johari and K. Pathmanathan, J. Chem. Phys. 85, 6811 (1986).

    Article  CAS  Google Scholar 

  29. R. Casalini and C. M. Roland, Phys. Rev. B 69, 094202–1 (2004).

    Article  Google Scholar 

  30. R. Abe, M. Horioka, I. Sakumiya, et al., J. Phys. Soc. Jpn. 63, 4200 (1994).

    Article  CAS  Google Scholar 

  31. S. Kojima, K. Saruta, and A. Yoshihara, Jpn. J. Appl. Phys. 36, 2981 (1997).

    Article  CAS  Google Scholar 

  32. V. I. Zhuravlev, N. A. Ivanova, and K. A. Zhuravleva, Zh. Obshch. Khim. 62, 42 (1992).

    CAS  Google Scholar 

  33. S. G. Onishchenko and V. V. Levin, Study of Dielectrical Properties of Polypropylene Glycols 1.2 Dep. VINITI 5.09.1973, No. 6958-73 (Moscow, 1973).

  34. G. Forsyte, M. Malcolm, and C. Mouler, Computer Methods for Mathematical Computations (Prentice-Hall, Englewood Cliffs, NJ, 1977; Mir, Moscow, 1980).

    Google Scholar 

  35. H. Vogel, Phys. Z. 22, 645 (1921).

    CAS  Google Scholar 

  36. G. S. Fulcher, J. Am. Ceram. Soc. 77, 3701 (1925).

    Google Scholar 

  37. G. Tammann and W. Hesse, Z. Anorg. Allg. Chem. 156, 245 (1926).

    Article  Google Scholar 

  38. J. Ferry, Visco-elastic Properties of Polymers, 2nd ed. (Inostr. Liter., Moscow, 1963; Wiley, New York, 1969).

    Google Scholar 

  39. R. Kohlrausch, Ann. Phys. (Leipzig) 167, 56 (1854).

    Google Scholar 

  40. G. Williams and D. C. Watts, Trans. Faraday Soc. 66, 80 (1970).

    Article  CAS  Google Scholar 

  41. F. Alvarez, A. Alegria, and J. Colmenero, Phys. Rev. B 44, 7306 (1991).

    Article  Google Scholar 

  42. A. N. Vinogradov, Candidate’s Dissertation in Mathematical Physics (Mosk. Gos. Univ., Moscow, 1985).

    Google Scholar 

  43. L. H. Thomas and R. Meatyard, J. Chem. Soc. A, p. 92 (1966).

  44. M. I. Shakhparonov, Introduction to Modern Theory of Solution (Vyssh. Shkola, Moscow, 1976) [in Russian].

    Google Scholar 

  45. E. G. Atovmyan, S. M. Baturin, and T. N. Fedotova, Vysokomol. Soedin. A 31, 1685 (1989).

    CAS  Google Scholar 

  46. V. A. Durov and I. Yu. Shilov, Zh. Fiz. Khim. 81, 249 (2007).

    Google Scholar 

  47. F. Daniels and R. Alberty, Physical Chemistry (McGraw-Hill, New York, 1970; Mir, Moscow, 1978).

    Google Scholar 

  48. V. Crupi, D. Majolino, P. Migliardo, and V. Venuti, J. Mol. Struct. 790, 135 (2006).

    Article  CAS  Google Scholar 

  49. V. Crupi, F. Longo, D. Majolino, and V. Venuti, J. Mol. Struct. 790, 141 (2006).

    Article  CAS  Google Scholar 

  50. V. A. Durov and I. Yu. Shilov, Zh. Fiz. Khim. 81, 2049 (2008) [Russ. J. Phys. Chem. A 81, 1838 (2008)].

    Google Scholar 

  51. W. Caminati, J. Mol. Spectrosc. 86, 193 (1981).

    Article  CAS  Google Scholar 

  52. V. V. Levin, in Physics and Physicochemistry of Liquids (Mosk. Gos. Univ., Moscow, 1972), No. 1, p. 176 [in Russian].

    Google Scholar 

  53. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Article  CAS  Google Scholar 

  54. O. Yamamuro, K. Takeda, I. Tsukushi, et al., Physica B 311, 84 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zhuravlev.

Additional information

Original Russian Text © T.M. Usacheva, N.V. Lifanova, V.I. Zhuravlev, V.K. Matveev, 2010, published in Zhurnal Fizicheskoi Khimii, 2010, Vol. 84, No. 7, pp. 1315–1323.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usacheva, T.M., Lifanova, N.V., Zhuravlev, V.I. et al. A dielectric study of the structure of propylene glycol. Russ. J. Phys. Chem. 84, 1194–1201 (2010). https://doi.org/10.1134/S0036024410070198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024410070198

Keywords

Navigation