Skip to main content
Log in

Nanostructured zirconia-doped titania as the anode material for lithium-ion battery

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nanostructured TiO2 and TiO2-ZrO2 (4 wt % ZrO2) in the anatase crystal modification have been synthesized through a template sol-gel route. Morphological and structural features of these compounds have been studied by scanning electron microscopy and Raman spectroscopy. The synthesized materials are porous nanostructured microtubes 10–300 μm in length and 3–5 μm in diameter. The size of nanoparticles forming tubes is 15–25 nm. Doping with zirconia (≤4 wt %) does not change the anatase crystal structure; at the same time, this is accompanied by an increase in the unit cell parameters and in the number of defects in the lattice. The availability of nanostructured TiO2-ZrO2 as an anode material for a Li-ion battery has been evaluated by the galvanostatic discharge-charge method. After 20 cycles in the range 3-1 V, the reversible capacity of TiO2-ZrO2 was 140 mA h/g, while the capacity of the undoped TiO2 was 65 mA h/g. The developed method for modification of titania is efficient from the standpoint of producing a promising anode material for Li-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Kunshina, V. I. Ivanenko, O. G. Gromov, et al., Russ. J. Inorg. Chem. 59, 1175 (2014).

    Article  CAS  Google Scholar 

  2. A. Yu. Tsivadze, T. L. Kulova, and A. M. Skundin, Prot. Met. Phys. Chem. Surf. 49, 145 (2013).

    Article  CAS  Google Scholar 

  3. G. V. Semenova, E. Yu. Kononova, and T. P. Sushkova, Russ. J. Inorg. Chem. 58, 1112 (2013).

    Article  CAS  Google Scholar 

  4. G. V. Li, T. L. Kulova, V. A. Tolmacheva, et al., Semiconductors 47, 1275 (2013).

    Article  CAS  Google Scholar 

  5. G. B. Kunshina, O. G. Gromov, E. P. Lokshin, et al., Russ. J. Inorg. Chem. 59, 424 (2014).

    Article  CAS  Google Scholar 

  6. S. A. Novikova, S. A. Yaroslavtsev, and V. S. Rusakov, Mendeleev Commun. 23, 251 (2013).

    Article  CAS  Google Scholar 

  7. O. V. Popova and M. Yu. Serbinovskii, Russ. J. Appl. Chem. 87, 818 (2014).

    Article  CAS  Google Scholar 

  8. T. L. Kulova and A. M. Skundin, Russ. J. Electrochem. 48, 330 (2012).

    Article  CAS  Google Scholar 

  9. C. Jiang and J. Zhang, J. Mater. Sci. Technol. 29, 97 (2013).

    Article  CAS  Google Scholar 

  10. R. Marom, F. Amalraj, N. Leifer, et al., J. Mater. Chem. 21, 9938 (2011).

    Article  CAS  Google Scholar 

  11. T. L. Kulova, Russ. J. Electrochem. 49, 1 (2013).

    Article  CAS  Google Scholar 

  12. V. G. Kuryavyi, A. Yu. Ustinov, D. P. Opra, et al., Mater. Lett. 137, 398 (2014).

    Article  CAS  Google Scholar 

  13. G. S. Zakharova, Russ. J. Inorg. Chem. 59, 24 (2014).

    Article  CAS  Google Scholar 

  14. S. V. Gnedenkov, D. P. Opra, S. L. Sinebryukhov, et al., J. Alloys Comp. 621, 364 (2015).

    Article  CAS  Google Scholar 

  15. T. Li, N. Lun, Y. Qi, et al., J. Power Sources 273, 472 (2015).

    Article  CAS  Google Scholar 

  16. A. G. Dylla, G. Henkelman, and K. J. Stevenson, Acc. Chem. Res. 46, 1104 (2013).

    Article  CAS  Google Scholar 

  17. M. V. Koudriachova, N. M. Harrison, and S. W. de Leeuw, Solid State Ionics 152–153, 189 (2002).

    Article  Google Scholar 

  18. J. Jeong, D. Jung, E. W. Shin, et al., J. Alloys Comp. 604, 226 (2014).

    Article  CAS  Google Scholar 

  19. T. V. Thi, A. K. Rai, J. Gim, et al., J. Alloys Comp. 598, 16 (2014).

    Article  CAS  Google Scholar 

  20. Y. Ren, J. Li, and J. Yu, Electrochim. Acta 138, 41 (2014).

    Article  CAS  Google Scholar 

  21. W. Zhang, Y. Gong, N. P. Mellott, et al., J. Power Sources 276, 39 (2015).

    Article  CAS  Google Scholar 

  22. V. V. Zheleznov, Yu. V. Sushkov, E. I. Voit, et al., J. Appl. Spectrosc. 80, 581 (2013).

    Article  CAS  Google Scholar 

  23. V. V. Zheleznov, Yu. V. Sushkov, E. I. Voit, et al., Zh. Prikl. Spectrosk. 81, 889 (2014).

    Google Scholar 

  24. G. G. Siu and M. J. Stokes, Phys. Rev. 59, 3173.

  25. G. Busca, G. Ramis, J. M. G. Amores, et al., J. Chem. Soc., Faraday Trans. 90, 3181 (1994).

    Article  CAS  Google Scholar 

  26. O. Frank, M. Zukalova, B. Laskova, et al., Phys. Chem. Chem. Phys. 14, 14567 (2012).

    Article  CAS  Google Scholar 

  27. W. F. Zhang, Y. L. He, M. S. Zhang, et al., J. Phys. D: Appl. Phys. 33, 912 (2000).

    Article  CAS  Google Scholar 

  28. D. Bersani, P. P. Lottici, and X. Ding, Appl. Phys. Lett. 72, 72 (1998).

    Article  Google Scholar 

  29. M. Pal, U. Pal, J. M. Gracia, et al., Nanoscale Res. Lett. 7, 1 (2012).

    Article  Google Scholar 

  30. S. M. Chang and R. A. Doong, J. Phys. Chem. B 110, 20808.

  31. A. Amlouk, L. el Mir, S. Kraiem, et al., J. Phys. Chem. Solids 67, 1464 (2006).

    Article  CAS  Google Scholar 

  32. S. P. Gubin, G. Yu. Yurkov, Yu. A. Koksharov, et al., Russ. Chem. Rev. 74, 489 (2005).

    Article  CAS  Google Scholar 

  33. H. Bai, Z. Liu, and D. D. Sun, J. Mater. Chem. 22, 24552 (2012).

    Article  CAS  Google Scholar 

  34. N. Takami, Y. Harada, T. Iwasaki, et al., J. Power Sources 273, 923 (2015).

    Article  CAS  Google Scholar 

  35. L. Chen, L. Shen, P. Nie, et al., Electrochim. Acta 62, 408 (2012).

    Article  CAS  Google Scholar 

  36. S. Brutti, V. Gentili, H. Menard, et al., Adv. Energy Mater. 2, 322 (2012).

    Article  CAS  Google Scholar 

  37. M. A. Ahmed, K. E. Rady, and M. S. Shams, J. Alloys Comp. 622, 269 (2015).

    Article  CAS  Google Scholar 

  38. W. L. Zhu, H. W. Huang, X. Q. Feng, et al., Solid State Commun. 125, 253 (2003).

    Article  CAS  Google Scholar 

  39. Z. Ren, C. Chen, X. Fu, et al., Mater. Lett. 117, 124 (2014).

    Article  CAS  Google Scholar 

  40. W. Xu, Z. Wang, Z. Guo, et al., J. Power Sources 232, 193 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gnedenkov.

Additional information

Original Russian Text © S.V. Gnedenkov, D.P. Opra, V.V. Zheleznov, S.L. Sinebryukhov, E.I. Voit, A.A. Sokolov, Yu.V. Sushkov, A.B. Podgorbunskii, V.I. Sergienko, 2015, published in Zhurnal Neorganicheskoi Khimii, 2015, Vol. 60, No. 6, pp. 732–738.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnedenkov, S.V., Opra, D.P., Zheleznov, V.V. et al. Nanostructured zirconia-doped titania as the anode material for lithium-ion battery. Russ. J. Inorg. Chem. 60, 658–664 (2015). https://doi.org/10.1134/S0036023615060054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023615060054

Keywords

Navigation